513

¹⁹F Magnetic Resonance Spectroscopic Investigation of the Binding of *N*-Trifluoroacetylated Amino-acids by Chymotrypsin

By H. ASHTON and B. CAPON*

(Chemistry Department, Glasgow University, Glasgow W.2)

Summary The binding of N-trifluoroacetyl-D-tryptophan by chymotrypsin causes a downfield shift in the ¹⁹F n.m.r. signal in the pH range 6·33—8·12 and that of N-trifluoroacetyl-D-phenylalanine and of N-trifluoroacetyl-L-tryptophan causes a downfield shift at pH 6·34.

THE shift in the ¹⁹F n.m.r. signal of the sodium salt of N-trifluoroacetyl-D-tryptophan in the presence of chymotrypsin may be used to measure the dissociation constant of the complex formed by this inhibitor and the enzyme $(K_{\rm I})$. Some of the values obtained are given in the Table. At all pH values there was a variation in δ of more than 4 Hz over the concentration range $5 \times 10^{-2} - 5 \times 10^{-8}$ M with the concentration of chymotrypsin 2×10^{-3} M. At some pH values, *e.g.* 6.33, this variation was as large as 13.4 Hz. The direction of the shift was always downfield. The large increase in $K_{\rm I}$ at pH *ca.* 8 is similar to that reported by Johnson and Knowles¹ for the binding of *N*acetyl-D-tryptophan to chymotrypsin, measured by equilibrium dialysis. Within experimental error (± 0.1 Hz) the chemical shift was independent of concentration in the absence of enzyme. Care was taken to keep the pH constant over the whole concentration range studied

TABLE

Binding of N-trifluoroacetyl-D-tryptophan	ı to	chymotrypsin
---	------	--------------

pH		6.33	6.89	7.72	8.12
10 ² K1 (м) ^в	••	0.65	1.59	2.86	$7 \cdot 2$
$\Delta(Hz)$ b		112	182	148	255
К _т (м)°	••	ca. 10 ⁻³		ca. 10 ⁻²	

^a Dissociation constant of chymotrypsin-N-trifluoroacetyl-Dtryptophan complex determined from ¹⁹F-resonance results at 94·1 MHz; trifluoroacetic acid was used as external standard. ^b Difference in chemical shift between bound and unbound N-trifluoroacetyl-D-tryptophan. ^c Kinetically determined inhibition constant.

(always to within ± 0.05). The values of $K_{\rm I}$ in the Table were calculated by the method of Nakano, Nakano, and Higuchi² and are in moderate agreement with those determined kinetically for the hydrolysis of *N*-furylacroyl-L-tryptophanamide.

There have been two previous investigations of the binding of N-trifluoroacetylamino-acids to chymotrypsin by ¹⁹F resonance. Zeffren and Reavill reported that in citrate buffer (0.1M), at pH 6.0, there was a downfield shift of the ¹⁹F signal of one enantiomer of N-trifluoroacetyl-DLphenylalanine in the presence of chymotrypsin³ but Sykes reported an upfield shift in the ¹⁹F signal of N-trifluoroacetyl-D-phenylalanine in 0.1M-tris-HCl buffer at pH 7.8.4 However the shifts observed were very small. Thus, the reported variation in shift for a concentration range 4×10^{-3} M -3.6×10^{-2} M was less than 1 Hz with an experimental error of ± 0.1 Hz.⁴ In our experiments the difference in pH between a solution of 4×10^{-3} and 3.6×10^{-2} M-N-trifluoroacetyl-D-phenylalanine in the presence of chymotrypsin $(2 \times 10^{-3} \text{ M})$ in a 0.1 m-tris-HCl buffer of nominal pH 7.88 was over one pH unit. The difference between chemical shifts in the presence and absence of chymotrypsin was 4.5 ± 0.2 Hz for all concentrations of N-trifluoroacetyl-D-phenylalanine and varied randomly. The signal moved to lower field in the presence of chymotrypsin. The ¹⁹F signal of the sodium salt of N-trifluoroacetyl-D-phenylalanine at pH 7.96 \pm 0.01 moved to lower field in the presence of chymotrypsin $(2 \times 10^{-3} M)$ but the shift was constant at 3.2 ± 0.2 Hz over the concentration range 5×10^{-3} — 4×10^{-2} M. At pH 6.34 (± 0.05) there was a downfield shift in the presence of chymotrypsin which varied with concentration. The value of K_{I} was calculated to be 4.3×10^{-2} M, in quite good agreement with that determined kinetically (3×10^{-2}) .

The ¹⁹F signal of N-trifluoroacetyl-L-tryptophan at pH 6.34 shows a concentration-dependent downfield shift in the presence of chymotrypsin but this is too small (< 4 Hz) to allow a reliable value of K_{I} to be determined.

It has been concluded⁵ from the reports that the ^{19}F signal of N-trifluoroacetyl-D-phenylalanine shows a downfield shift in the presence of chymotrypsin at pH 6.0^3 and an upfield shift at pH 7.8^4 that there is a 'major change in the magnetic environment of the fluorine atoms of the bound inhibitor with pH'. The results obtained in this investigation suggest that if there is such a change the effect on the ¹⁹F-shift of the bound inhibitor is not so large as previously supposed.

We thank Mr. J. Gall for measurements of the ¹⁹F chemical shifts.

(Received, February 22nd, 1971; Com. 150.)

- ¹C. H. Johnson and J. R. Knowles, *Biochem. J.*, 1966, 101, 56. ² M. Nakano, N. I. Nakano, and T. Higuchi, *J. Phys. Chem.*, 1967, 71, 3954.
- ⁸ E. Zeffren and R. E. Reavill, Biochem. Biophys. Res. Comm., 1968, **32**, 73.
 ⁴ B. D. Sykes, Biochem. Biophys. Res. Comm., 1968, **33**, 727; J. Amer. Chem. Soc., 1969, 91, 949.
- ⁵ C. G. K. Roberts and O. Jardetzky, Adv. Protein Chem., 1970, 24, 512.