## **Cationic Tertiary Phosphine Palladium Hydride Complexes**

By M. L. H. GREEN and H. MUNAKATA

(Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary Cationic square-planar palladium hydride complexes are described which act as efficient catalysts for butadiene oligomerization.

STABLE, neutral palladium hydride complexes have been described recently.<sup>1,2</sup> We now report the first example of cationic palladium hydride complexes. They have been

phosphinoethane and ammonium hexafluorophosphate [equation (1)].

The corresponding reaction using trans-(R<sub>3</sub>P)<sub>2</sub>NiHCl gives a five-co-ordinated cationic nickel hydride complex, [(Ph<sub>2</sub>P·CH<sub>2</sub>·CH<sub>2</sub>·PPh<sub>2</sub>)<sub>2</sub>NiH]+PF<sub>6</sub>-. Similar types of nickel hydrides have been described.<sup>3</sup>

The <sup>1</sup>H n.m.r. data are given in the Table. The Pd-H

Cationic hydride complexes

|                                                                                                                                                                            |                   |               | I.r. data | <sup>1</sup> H N.m.r. data |                         |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------|----------------------------|-------------------------|--------------------------|
| Compounds                                                                                                                                                                  | Colour            | М.р.          | М-Н       | (M7H) b                    | J[H-trans-P(1)]<br>Hz   | J[H-cis-P(2 or 3)]<br>Hz |
| $[(Ph_2P \cdot CH_2 \cdot CH_2 \cdot PPh_2)(Cy_3P)PdH]^{+-}$<br>PF <sub>6</sub> <sup>i</sup> (I)                                                                           | Colourless        | 190—192° dec. | 1895      | 15.52c,e,g                 | 196                     | 14.8, 5.6                |
| $[(Ph_2P \cdot CH_2 \cdot CH_2 \cdot PPh_2)(Pr_3P)PdH]^+ - PF_6^- (II)$                                                                                                    | V. pale<br>yellow | 173—175° dec. | 1959      | 15.31c,f,h                 | 196                     | 19.8                     |
| $[(Ph_{2} \overset{\bullet}{\mathrm{P}} \cdot \overset{\bullet}{\mathrm{CH}}_{2} \cdot \operatorname{CH}_{2} \cdot \operatorname{PPh}_{2})_{2} \mathrm{NiH}] + PF_{6}^{-}$ | Orange            |               | 1930      | 23·0d,f                    | [quintet, $J(H-P)$ 5.0] |                          |

<sup>a</sup> Nujol mulls. <sup>b</sup> Me<sub>4</sub>Si internal reference. <sup>c</sup> Perkin-Elmer R14 at 100 MHz. <sup>d</sup> JEOL-C-60H at 60 MHz. <sup>e</sup> In CH<sub>2</sub>·Cl<sub>2</sub>. <sup>f</sup> In (CD<sub>3</sub>)<sub>2</sub>CO. <sup>g</sup> A doublet of doublets. <sup>h</sup> A doublet of doublets. <sup>l</sup> Equivalent conductivity in CH<sub>2</sub>Cl<sub>2</sub> assuming monomeric formulae  $60\Omega$  cm<sup>2</sup>.

prepared by treatment of the neutral palladium hydride complexes, trans- $(R_3P)_2$ PdHCl [R = Pri or Cy (Cy = cyclohexyl)], in benzene-methanol with 1,2-bisdiphenyl-



resonance of complex (I) appears as a doublet of doubledoublets, and for complex (II) as a doublet of doublets. These couplings may be assigned as shown in the Table on the basis of  $J(H-trans-P) \gg J(H-cis-P)$  observed in related platinum complexes.4

Preliminary studies on butadiene oligomerization showed that these cationic palladium hydride complexes act as efficient catalysts, [e.g. in equation (2)]. These hydrides,

1,3-Butadiene 
$$\xrightarrow{(I),60 \text{ °C 6h.}}$$
 n-Octa-1,3,7-triene +  
MeOH

3-Methoxyocta-1,7-diene + 1-Methoxyocta-2,7-diene (2)

therefore, catalyse the same class of reactions as do palladium neutral derivatives such as (Ph<sub>3</sub>P)<sub>4</sub>Pd and (Ph<sub>3</sub>P)<sub>2</sub>Pd (maleic acid anhydride).5

We thank Mitzubishi Chemical Industries Ltd. for a scholarship (to H.M.).

(Received, April 5th, 1971; Com. 502.)

- <sup>1</sup>H. Munakata and M. L. H. Green, Chem. Comm., 1970, 881.
- <sup>2</sup> M. L. H. Green, H. Munakata, and T. Saito, J. Chem. Soc. (A), 1971, 469. <sup>3</sup> R. A. Schunn, Inorg. Chem., 1970, 9, 394.

- <sup>4</sup> F. Glockling and K. A. Hooton, J. Chem. Soc. (A), 1968, 826.
  <sup>5</sup> S. Takahashi, T. Shibano, and N. Hagihara, Bull. Chem. Soc. Japan, 1968, 41, 454.