555

Acid-catalysed Formation of Naphthalenes from a β -Oxo-sulphoxide

By YUJI OIKAWA and OSAMU YONEMITSU*

(Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan)

Summary Under mild conditions the β -oxo-sulphoxide (1) undergoes acid-catalysed rearrangement and cyclization to form naphthalenes.

 β -OXO-SULPHOXIDES are known to be important intermediates in various organic syntheses^{1,2} and have been studied extensively.³ We report here the acid-catalysed formation of naphthalene derivatives from 3,4-dimethoxyphenethyl methylsulphinylmethyl ketone (1).

A solution of (1)[†] in ethyl acetate containing l equiv. of toluene-*p*-sulphonic acid was kept at room temperature. Ethyl acetate was evaporated off at 40°, and the residual oil was chromatographed on silica gel to give 2,3-dimethoxy-6-ethoxynaphthalene (2) [m.p. 144—146°; *m/e*, 232 (*M*⁺); λ_{\max} (EtOH), 318 and 332 nm], 2,3-dimethoxy-6-methylthionaphthalene (5) [m.p. 86—88°; *m/e*, 234 (*M*⁺); λ_{\max} (EtOH), 318 (shoulder), 330 and 340 nm], and 2,3-dimethoxy-6-hydroxynaphthalene (6) [*m/e*, 204 (M⁺); λ_{\max} (EtOH), 320 and 333 nm; λ_{max} (H⁺), 320 and 330 nm; λ_{max} (OH⁻), 345 nm]. Structural assignments are based

Yields of naphthalenes obtained under various conditions^a

	Naphthalene (%)				
	(2)	(3)	(4)	(5)	(6)
1	40			22	4
2		20		30	5
3			19.5	17	
4	36			24	5
5		23		55.5	14

^a 1: TsOH (1 equiv.) in AcOEt, 36 h at room temperature, evaporated at 40°. 2: TsOH (1 equiv.) in AcOMe, 18 h. 3: TsOH (1 equiv.) in Me₂CHOH, 20 h. 4: MeSO₃H (1 equiv.) in EtOH, 20 h. 5: TsOH (0.5 equiv.), TsOMe (1 equiv.) in CH₂CH₂, 20 h.

mainly on n.m.r. and i.r. spectra. Chemical shifts [τ (CCl₄): (2) 2.55 (8-H), 3.10 (1-, 4-, 5-, 7-H); (5) 2.55 (8-H),

+ Compound (1) was synthesised from ethyl 3,4-dimethoxyphenyl propionate and the dimsyl anion (MeSOCH₂-).

2.63 (5-H), 2.90 (7-H), and 3.15 (1,4-H)] and out of plane deformation bands [v (Nujol): (2), 865 (isolated aromatic protons), and 855 cm⁻¹ (two adjacent aromatic protons); (5), 870 (isolated aromatic protons), and 860 cm^{-1} (two adjacent aromatic protons)] of the aromatic protons show that these compounds are 2,3,6-trisubstituted naphthalenes.4 The structure of the thionaphthalene (5) was also confirmed by reduction with Raney nickel to 2,3-dimethoxynaphthalene (7).⁴ The reaction in methyl acetate, ethanol or propan-2-ol afforded the corresponding alkoxynaphthalene.

Naphthalene formation probably occurs by O-alkylation of the sulphoxide (1) followed by acid-catalysed rearrangement and cyclization to the electron-donating aromatic nucleus as shown in the Scheme. An intermediate (8) $[m/e, 298 (M^+), 105$ [base peak, CH=S(Me)OEt]; λ_{max} (EtOH), 286 nm; ν (Nujol), 1720 cm⁻¹; τ (CCl₄), 3.23 (3H, aromatic), 5.25 (1H, vinyl)] was isolated and its spectral data suggest that because of the inductive effect of the alkoxy group (8) exists in the ylene and not the ylide form.⁵ Use of alkyl toluenesulphonate as an alkylating agent

gave naphthalenes in >90% yield.

(Received, March 30th, 1971; Com. 458.)

- ¹ E. J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 1962, 84, 866; 1965, 87, 1345.
 ² G. A. Russell and H. D. Becker, *ibid.*, 1963, 85, 3406; H. D. Becker, G. J. Mikol, and G. A. Russell, *ibid.*, 1963, 3410.
 ³ G. A. Russell and L. A. Ochrymowycz, J. Org. Chem., 1970, 35, 764, 2106; G. A. Russell and G. Hamprecht, *ibid.*, 1970, 35, 3007.
 ⁴ A. Zweig, J. E. Lancaster, and M. T. Negia, Tetrahedron, 1967, 23, 2577.
 ⁵ Cf. A. W. Johnson and R. T. Amel, J. Org. Chem., 1969, 34, 1240.