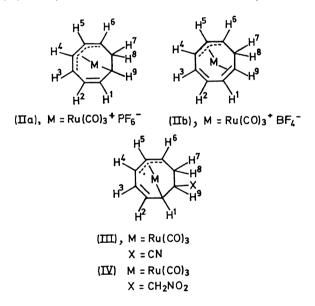
Protonation of Tricarbonyl(cyclo-octatetraene)-ruthenium(0) and -osmium(0)

By M. COOKE, P. T. DRAGGETT, and M. GREEN*


(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

and B. F. G. JOHNSON, J. LEWIS,* and D. J. YARROW

(Lensfield Road, Cambridge CB2 1EW)

Summary Protonation of tricarbonyl(cyclo-octatetraene)ruthenium gives a tricarbonyl(bicyclo[5,1,0]octadienium)ruthenium cation, which isomerises to $\lceil h^{5}-1,2,5,6,7-1\rangle$ $C_{g}H_{g}Ru(CO)_{3}]^{+}$; similar reaction occurs with α - $C_{g}H_{g}^{--}$ $Os(CO)_3$; the reaction of $[h^5-1, 2, 5, 6, 7-C_8H_9Ru(CO)_3]^+$ with CN- and CH2NO2- is described

PROTONATION of tricarbonyl(cyclo-octatetraene)iron in strongly acidic media has been shown¹ to lead to the formation of the tricarbonyl(bicyclo[5,1,0]octadienium)iron cation which, it has been suggested, is formed by ring closure of an initially formed tricarbonvl(cvclo-octatrienvlium)iron cation. The analogous ruthenium and osmium systems behave differently; an initially formed bicyclic cation undergoes a ring-opening reaction to give cations containing the C.H. moiety bonded to the metal in a novel way.

The ¹H n.m.r. spectrum of tricarbonyl(cvclo-octatetraene)ruthenium (conc. H₂SO₄) suggests the initial formation of a tricarbonyl(bicyclo[5,1,0]octadienium)ruthenium cation, but on leaving the sample at room temperature the spectrum changes to give finally resonances at τ 4.46 (dd, 1H), 4.89 (asymmetric d, 1H), 5.18 (asymmetric dd, 1H), 5.75 br (s, 3H), 6.49 (q, 1H), and 6.98 br (m, 2H).

A similar protonation in diethyl ether with aqueous HPF, afforded in quantitative yield a white crystalline material characterised by elemental analysis as [C8H9Ru- $(CO)_3$]+PF₆- (IIa), and examination of the ¹H n.m.r. spectrum (SO₂) revealed a 1:1:1:3:1:2 spectrum similar to that finally observed in sulphuric acid suggesting that in this solvent (Et₂O-H₂O) system an initially formed bicyclic cation rapidly isomerises. This was confirmed when it was observed that tricarbonvl(bicvclo[5,1,0]octadienium)ruthenium tetrafluoroborate (I) can be prepared by addition of HBF₄-Ac₂O to C₈H₈Ru(CO)₃ followed by rapid precipitation of the resultant protonated species with diethyl ether. The ¹H n.m.r. spectrum (CD₂CN) of (I) showed resonances at τ 2.3 (m, 1H), 4.7 (m, 4H), 7.0 (m, 2H), and 8.0 (m, 2H), a pattern similar to that reported¹ for the related iron system, thus confirming the structural identity of (I).

The cation (I) isomerises[†] in HBF₄-Ac₂O to give (IIb), characterised as a $[C_8H_9Ru(CO)_3]$ +BF₄-isomer by elemental analysis, and i.r. spectroscopy [ν_{max} 2125vs (CO), 2060vs,br (CO), 1660m (C=C), and 796m (C=C) cm⁻¹]; except for the difference in anion (IIb) is identical to (IIa). The ¹H n.m.r. spectrum [100 MHz (CD₃)₂CO] (see Figure) of (IIa) and

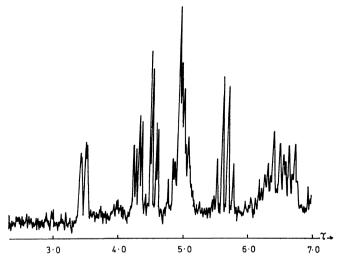


FIGURE. ¹H N.m.r. spectrum (100 MHz) of compounds (IIa) and (IIb)

(IIb) showed resonances at τ 3.52 (dd, H1, $J_{1,2}$ 2.3 Hz, $J_{1,9}$ 8.0 Hz), 4.32 (dd, A part of an AB system, H³, $J_{2,3}$ 8.0 Hz, $J_{3,4}$ 3.9 Hz), 4.66 (dd, B part of an AB system, H², $J_{2,3}$ 8.0 ^{10,7} Hz, $J_{1,2}$ 2.3 Hz), 4.94 (complex m, H⁴, H⁵, and H⁶), 5.59 (q, H⁹, $J_{1,9}$ 8.0 Hz, $J_{7,9} = J_{8,9} = 8.0$ Hz), and 6.30 (over-lapping m, H⁷ and H⁸); at 220 MHz the complex multiplet[‡] ascribed to H4, H5, and H6 appeared as two multiplets centred at τ 4.82 and 4.95, and the methylene hydrogens H⁷ and H⁸ appeared as two multiplets of equal intensity centred at τ 6.18 and 6.43.

Double irradiation experiments support this analysis; in particular, the arrangement CH3·CH2·CH1·CH9·CH7H8 was firmly established. Thus, as illustrated, either a h^{5} -1,4,5,6,7or a h^{5} -1,2,5,6,7-cyclic structure for (II) is consistent with

† Over a long period of time in CD₃CN the isomerisation is reversed *i.e.* (II) \rightarrow (I). ‡ In the related triphenylphosphine derivative [C₈H₉Ru(CO)₂PPh₃]+PF₆⁻ H⁴, H⁵, and H⁶ appear as separate resonances.

these observations; an alternative h^{5} -1,2,3,4,5-bonding arrangement is not compatible with the chemical shift and coupling constant data.

Treatment of (II) with cyanide ions or nitromethane– Na₂CO₃ afforded respectively the neutral complexes (III) and (IV), which were shown to be isostructural by comparison of their spectral data. The ¹H n.m.r. spectrum of (IV) showed resonances at τ 4·34 (dd, H³, $J_{2,3}$ 7·0 Hz, $J_{3,4}$ 4·0 Hz), 4·52 (dd, H², $J_{2,3}$ 7·0 Hz, $J_{1.2}$ 4·0 Hz), 4·96 (complex m, H⁶), 4·98 (dd, H⁴, $J_{3,4}$ 4·0 Hz, $J_{4,5}$ 9·0 Hz), 5·51 (apparent t, H⁵, $J_{5,6} = J_{4,5}$ 9·0 Hz), 5·99 (d, CH₂NO₂, $J_{HH^{\bullet}}$ 8·0 Hz), 6·86 (complex m, H⁹), 7·48 (apparent t, H¹, $J_{1,2}$ 4·0 Hz, $J_{1,9}$ 4·0 Hz), and 7·93 (overlapping d, H⁷ and H⁸). These observations, which are supported by double and triple resonance experiments, suggest the illustrated $\sigma-\pi$ h^{4} -1,4,5,6-bonded structure for (III) and (IV).

A h^{4} -1,4,5,6-bonded system has been previously² proposed for β -C₈H₈Os(CO)₃ and comparison of their n.m.r. data supports this analogy. Moreover, comparison of the chemical shift and coupling constant data for the structurally common hydrogens in (II), (III), and (IV), *i.e.* H², H³, H⁴, H⁵, and H⁶, strongly suggests that the cation (II) has the C₈H₉ group bonded as a h^{5} -1,2,5,6,7-system. If this is true then it is interesting that in contrast to the π -allylicolefin complexes of other d^8 metal ions, e.g. Co^I, Rh^I, or Ir^{I,3} addition of nucleophiles to (II) occurs at the coordinated double bond rather than at the π -allylic system.

The action of protonic acids on α -C₈H₈Os(CO)₃ generates two isomeric forms of the protonated species [C₈H₈Os-(CO)₃]⁺. One is isostructural with the ruthenium complex (II); and the other which isomerises to the first in solution, is identical to the bicyclic iron and ruthenium cations.

It is apparent that even within a given transition metal triad the rôle of the metal is critically important in deciding the isomeric form adopted by an organo-group on coordination. If it is assumed that in the bicyclic system the methylene bridge is *exo* to the metal then the isomerisation $(I) \rightarrow (II)$ can be seen as an intramolecular attack on the internal cyclopropane C-C bond, a reaction which is facilitated by a disrotatory ring opening. It is interesting that the iron system does not undergo an analogous isomerisation.

(Received, January 18th, 1971; Com. 619.)

² M. I. Bruce, M. Cooke, M. Green and D. J. Westlake, J. Chem. Soc. (A), 1969, 987.

¹ A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1962, 4821.

³ J. Lewis and A. W. Parkins, J. Chem. Soc. (A), 1969, 953.