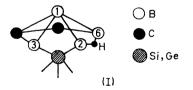
A New Class of Small *nido*-Carborane Compounds Containing a Stable B-MMe₃-B (M=Si or Ge) Three-centre Bond


By C. G. SAVORY and M. G. H. WALLBRIDGE*

(Department of Chemistry, The University, Sheffield S3 7HF)

Summary The preparation of 2,3-µ-trimethylsilyl (and germyl)-CC'-dimethyl-4,5-dicarba-nido-hexaborane(8),

2,3- μ -Me₃MC₂Me₂B₄H₅, (M = Si or Ge), has been achieved by the action of the trimethylchloro-compounds, Me₃-MCl, on the anion, C₂Me₂B₄H₅⁻; the compounds do not isomerise at room temperature to the terminal isomers.

ALTHOUGH several lower carborane compounds have been characterised relatively little is known of their properties. Thus for the pentagonal-pyramidal $nido-4,5-C_2R_2B_4H_6$ (R = H or Me) series substitution of the terminal B-H bonds with both halogen¹ and alkyl² has been achieved, and a Ga-Me group has been claimed to be inserted into the

basal B_3C_2 face,³ but the only other reported reaction is the removal of *one* of the two basal bridging hydrogen atoms (in B-H-B bonds) by nucleophiles yielding the anion, $4,5-C_2R_2B_4H_5^{-.4}$ The carborane is regenerated on addition of a proton donor (*e.g.* HCl, DCl, $B_{10}H_{14}$), and deuteriation studies have shown that the proton is inserted exclusively into the vacant bridge position.⁴

During our studies on the $C_2Me_2B_4H_5^-$ anion we have found that other groups (Me₃Si and Me₃Ge) are readily inserted into the vacant bridge position yielding a new class of stable nido-carborane compounds. The volatile liquid compounds, $2,3-\mu$ -Me₃MC₂Me₂B₄H₅ (I),[†] are obtained in high yield from the action of the trimethyl compounds, Me₃MCl, on the sodium salt, $Na^+C_2Me_2B_4H_5^-$, in ethereal solution at 25°. The Me₃M groups have been identified as being 2,3-(or the equivalent 2.6-) bridge substituted from the ¹¹B n.m.r. spectra which are similar for the two compounds consisting of a high-field doublet (area 1.0), and three lowfield doublets (area 3.0) assignable to the apical and basal boron atoms, respectively. The doublet at lowest field is both well separated from the other signals and rather broad, and exhibits only terminal B-H coupling indicating that it arises from the 2-B atom (other results have shown that basal boron atoms with two adjacent bridging groups show similar characteristics⁵⁻⁸). The two other low-field doublets are sharp and overlap, and may be assigned to the 3and 6-B atoms, in that the former shows only terminal B-H coupling, while for the latter both terminal B-H and B-H-B bridge coupling are observed. The ¹H n.m.r. spectra are also consistent with the above assignments since in each case the integrated ratio for the bridge and terminal protons is 1:4, and both spectra show the further significant feature of the separation of the two singlets due to the C-CH₃ groups by ca. 5 Hz, arising from the asymmetry introduced into the molecule by the bridging M(CH_a)_a

[†] These compounds have been characterised by elemental analysis and high-resolution mass spectrometry. The nomenclature used for these compounds follows that recommended in *Inorg. Chem.*, 1968, 7, 1945.

groups. It is relevant that such a separation has not previously been observed where it has been expected, e.g. in the 3-B terminally substituted alkyl² and halogen^{1,8} derivatives.

An interesting property of these compounds is the absence of any isomerisation process in ethereal solution at 25° over 24 h, because under similar conditions the bridge substituted μ -Me₃SiB₅H₈ isomerises rapidly to the terminal isomer.⁹ The ¹¹B n.m.r. spectra of μ -Me₃SiB₅H₈, and the

(Received, March 22nd, 1971; Com. 366.)

- ¹ J. R. Spielman, G. B. Dunks, and R. Warren, Inorg. Chem., 1969, 8, 2172.
- J. R. Spielman, G. B. Dunks, and K. Warren, *Inorg. Chem.*, 1909, 6, 2112.
 T. Onak, D. Marynick, P. Mattschei, and G. B. Dunks, *Inorg. Chem.*, 1968, 7, 1745.
 R. N. Grimes and W. J. Rademaker, *J. Amer. Chem. Soc.*, 1969, 91, 6498.
 T. Onak and G. B. Dunks, *Inorg. Chem.*, 1966, 3, 439.
 R. E. Williams and T. Onak, *J. Amer. Chem. Soc.*, 1964, 86, 3159.
 G. B. Dunks and M. F. Hawthorne, *Inorg. Chem.*, 1969, 8, 2667.
 T. Onak and L. P. Spielman, *I. Mann. Recommens*, 1970, 3, 122.

- ⁶ G. B. Dunks and M. F. Hawthorne, *Inorg. Chem.*, 1909, 8, 2007.
 ⁷ T. Onak and J. R. Spielman, J. Magn. Resonance, 1970, 3, 122.
 ⁸ J. S. McAvoy, C. G. Savory, and M. G. H. Wallbridge, J. Chem. Soc. (A), in the press.
 ⁹ D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 1968, 90, 6617.
 ¹⁰ H. D. Johnson, R. A. Geanangel, and S. G. Shore, Inorg. Chem., 1970, 9, 908.
 ¹¹ W. N. Lipscomb, "Boron Hydrides," Benjamin, New York, 1963, p. 173.
 ¹² R. E. Williams, J. Inorg. Nuclear Chem., 1961, 20, 198.