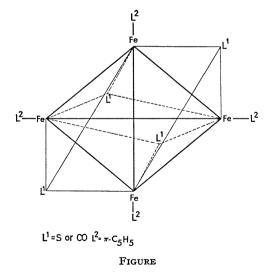
Multiple Oxidation States in Iron Cluster Compounds

By JOHN A. FERGUSON and THOMAS J. MEYER*

(Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514)

Summary Electrochemical studies indicate that the cluster system $[(\pi-C_5H_5)FeS]_4$ remains intact in the oxidation states +3, +2, +1, 0, and -1 and $[(\pi-C_5H_5)Fe(CO)]_4$ in the oxidation states +2, +1, 0, and -1.


THE two cyclopentadienyl iron cluster compounds $[(\pi C_5 H_5)-FeS]_4$ (I)¹ and $[(\pi - C_5 H_5)Fe(CO)]_4$ (II)² have similar structures with the four iron atoms arranged as a tetrahedron (Figure). We have studied the electrochemical properties of the two cluster compounds partly as an extension of our earlier work on the chemical and electro-chemical oxidation of compounds containing iron metal-metal bonds.³

Solutions of the monocation, $[(\pi-C_5H_5)FeS]_4^+$ or of the dication, $[(\pi-C_5H_5)FeS]_4^{2+}$, can be conveniently prepared by the suspension oxidation of (I) [at +0.60 or +1.20 V respectively vs. saturated sodium chloride calomel electrode (SSCE) in hot MeCN at a platinum electrode using NH_4 -PF, as supporting electrolyte. From these solutions the salts $[(\pi - C_5H_5)FeS]_4(PF_6)$ or $[(\pi - C_5H_5)FeS]_4(PF_6)_2$ have been isolated in 60—70% yields. The salts are stable to light and air. The monocation, $[(\pi-C_5H_5)FeS]_4^+$, is paramagnetic and gives a very broad n.m.r. signal centred at τ 4.23 (acetone τ 7.93) and an e.s.r. spectrum at room temperature in dichloromethane gives g = 1.980. The dication, [(π - C_5H_5)FeS]₄²⁺, is diamagnetic and has a sharp proton resonance at τ 3.99. Cyclic voltammograms of $[(\pi - C_5 H_5) -$ FeS]₄²⁺ at a platinum bead electrode have four electrochemically reversible waves indicating that the cluster remains intact in five distinct oxidation states. $E_{1/2}$ values relating the various oxidation states [vs. SSCE in 0.1M-Buⁿ₄NPF₆ (TBAH) acetonitrile solution, uncorrected for junction potentials] are given in equation (1). Attempts

$$(I)^{3+} \underline{1\cdot 41V} (I)^{2+} \underline{0\cdot 88V} (I)^{+} \underline{0\cdot 33V} (I) \underline{-0\cdot 33V} (I)^{-} (I)$$

to prepare $[(\pi-C_5H_5)FeS]_4^-$ and $[(\pi-C_5H_5)FeS]_4^{3+}$ electrochemically have been unsuccessful. Oxidation of $[(\pi-C_5H_5)-FeS]_4^{2+}$ to the trication results in catalytic oxidation of either trace amounts of water or solvent, passage of large amounts of current, and eventual decomposition to Fe³⁺.

From cyclic voltammetric measurements we also find that tetrakis(π -cyclopentadienylironcarbonyl) (II) exists in the

three additional electrochemically reversible oxidation states: -1, +1, and +2. In 0·1M TBAH-acetonitrile solution, the $E_{1/2}$ values relating the various oxidation states (vs. SSCE at Pt electrode, uncorrected for junction potentials) are given in equation (2).

$$(II)^{2+} \underline{1.07V} (II)^{+} \underline{0.32 V} (II) \underline{-1.30V} (II)^{-}$$
(2)

Controlled potential electrolysis of (II) at a platinum electrode at +0.70 V vs. SSCE in a 0.1 M-TBAH-dichloromethane solution gives the salt $[(\pi-C_5H_5)Fe(CO)]_4(PF_6)$ in 85% yield. In contrast to the halide and polyhalide salts previously reported,^{1,4} this salt is soluble in polar organic solvents. It is paramagnetic, with $\nu(CO) = 1695 \text{ cm}^{-1}$ (CH₃CN). Solutions of the air-sensitive, paramagnetic anion $[(\pi - C_5 H_5) Fe(CO)]_4^- [v(CO) = 1576 \text{ cm}^{-1} \text{ and } g = 2.013$ (CH₃CN], have been prepared by the electrochemical reduction of the cation at platinum in acetonitrile. It reacts rapidly with oxygen to give (II). Attempts to prepare the dication of (II), $[(\pi - C_5 H_5)Fe(CO)]_4^{2+}$, electrochemically in MeCN resulted in catalytic oxidation of trace amounts of water and ultimate decomposition to Fe^{2+} and $[(\pi C_5H_5)Fe(CO)_2(NCCH_3)]^+.$

Acknowledgments are made to the National Science Foundation and to the Petroleum Research Foundation for support of this research.

(Received, March 17th, 1971; Com. 328.)

1 R. A. Schunn, C. J. Fritchie, Jun., and C. T. Prewitt, Inorg. Chem., 1966, 5, 892; C. H. Wei, G. R. Wilkes, P. M. Treichel, and L. F. Dahl, Inorg. Chem., 1966, 5, 900.

L. F. Dahl, Inorg. Chem., 1966, 5, 900.
^a R. B. King, Inorg. Chem., 1966, 5, 2227.
^a J. A. Ferguson and T. J. Meyer, Inorg. Chem., 1971, 10, 1025; J. A. Ferguson and T. J. Meyer, submitted for publication; E. C. Johnson, N. Winterton, and T. J. Meyer, Chem. Comm., 1970, 934; Inorg. Chem., in the press.
⁴ R. Greatex and N. N. Greenwood, Discuss. Faraday Soc., 1969, 47, 126.