
A Molecular Rearrangement of 4β -Acetoxy-1,2-dihydrosantonene

By P. S. AUMEER and T. B. H. MCMURRY* University Chemical Laboratory, Trinity College, Dublin 2, Ireland)

Summary 4β -Acetoxy-1,2-dihydrosantonene (IIb), which can be prepared by oxidation of 1,2-dihydrosantonene 3-acetate (I), rearranges with acetic anhydride-pyridine to afford 2β -acetoxy-1,2-dihydrosantonene 3-acetate (IVb) by a mechanism involving intramolecular transfer of the 4β -acetate to the 2-position of the enolic form of (IIb).

RECENTLY we showed that 1,2-dihydro-4 β -hydroxysantonene (IIa) on acetylation afforded the 2β ,3-diacetate (IVb),¹ but we were unable to isolate the presumed intermediate acetate (IIb). We have now found that oxidation of the enol acetate (I) with chromium trioxide in t-butyl alcohol² affords the 4 β -acetate (IIb), m.p. 168—170°, $[\alpha]^{20} + 149^{\circ}$, ν_{max} 1768, 1750, 1727, and 1655 cm⁻¹, and traces of the known 4 α -acetate (V).¹ Probable intermediates in the reaction³ are epoxyacetates of the type (III) which then undergo rearrangement. Similar oxidation of santonene enol acetate (VI)⁴ affords 4 β -acetoxysantonene (VII).

Treatment of the 4β -acetate (IIb) with acetic anhydridepyridine affords the diacetate (IVb). Substitution of propionic for acetic anhydride affords a monoacetate monopropionate (IVc), m.p. 126—128°, $[\alpha]_{\rm p} - 608°$, M^+ , 316, $\nu_{\rm max}$ 1770, 1760, 1735, and 1640 cm⁻¹. This suggests that of the two alternative mechanisms considered,^{1,5} that involving an intramolecular transfer of the 4-acetate in the enol form of (IIb) is correct. The chromophoric system can also be formed on treatment of the 4β -acetate (IIb) with an excess of triethylamine in tetrahydrofuran. We were unable to isolate the resulting enol (IVa) in a pure state, but characterised it as the diacetate (IVb) and monoacetate monopropionate (IVc). This experiment showed that the rearrangement did not require the prior formation of a 2-enol ester. Further, little enolisation occurred in (IVa) towards the 2-position, as might be expected to occur

in the keto-form corresponding to (IVa). There is no ester exchange between the 2- and 3-oxygen substituents under the influence of base.

Satch et al.⁶ have recently suggested that 4β -bromo- 5β cholestanone is converted into 2α -acetoxy-5 β -cholestanone by the alternative $S_{N}2'$ mechanism which we considered as a possibility, and which involves an unusual transarrangement of attacking and leaving groups.7

(Received, April 22nd, 1971; Com. 622.)

- ¹ T. B. H. McMurry and R. C. Mollan, J. Chem. Soc. (C), 1969, 1619.
 ² K. Heusler and A. Wettstein, Helv. Chim. Acta, 1952, 35, 284.
 ³ Cf. A. H. Soloway, W. J. Considine, D. K. Fukushima, and T. F. Gallagher, J. Amer. Chem. Soc., 1954, 76, 2941; N. S. Leeds, D. K. Fukushima, and T. F. Gallagher, *ibid.*, p. 2943.
 ⁴ T. B. H. McMurry and R. C. Mollan, J. Chem. Soc. (C), 1967, 1813.
 ⁵ Cf. J. C. Sheehan and R. M. Wilson, J. Amer. Chem. Soc., 1967, 89, 3457.
 ⁶ J. Y. Satoh and T. T. Takahashi, Chem. Comm., 1970, 1714.
 ⁷ Cf. N. T. Ahn, Chem. Comm., 1968, 1089.