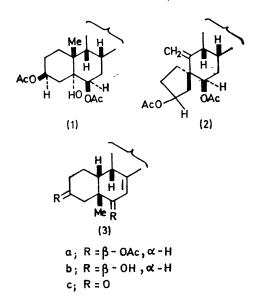
A Backbone Rearrangement in the 9β-Cholestane Series. Evidence for a Stepwise Mechanism


By J. M. COXON, M. P. HARTSHORN,* and C. N. MUIR

(Department of Chemistry, University of Canterbury, Christchurch, New Zealand)

Summary The 5α -hydroxy- 9β -cholestane compound (1) undergoes partial backbone rearrangement to the Δ^{7} -diacetate (3a) by a stepwise mechanism.

WHILE the backbone rearrangements of C-5 carbonium ions in the "normal" steroid series are considered to proceed by a stepwise mechanism involving a series of intermediate carbonium ions, evidence for this mechanism is limited. In support of the stepwise mechanism we now report a partial backbone rearrangement involving the *trans-syn-cis* system of the 5α -hydroxy-9 β -cholestane derivative (1).

Reaction of $3\beta, 6\beta$ -diacetoxy- 9β -cholestan- 5α -ol (1)¹ with thionyl chloride-pyridine at 20° gave, in addition to the known spiran (2) (70%),² a diacetate (23%) to which the rearranged Δ^7 -structure (3a) was assigned on the following evidence. For the diol (3b), obtained from the diacetate (3a) by reaction with lithium aluminium hydride, the 6α -H signal was shown (double irradiation) to be coupled to the vinylic 7-H. Oxidation of the diol (3b) gave the diketone shown by its i.r. (ν_{max} 1727 and 1680 cm⁻¹) and u.v. spectra [λ_{max} (cyclohexane) 229.5 (ϵ 6070), 239 (6210), and 251 nm

N.m.r. data ^a for the rearranged Δ ¹ -olefins					
Compound	5β-Me	3α-H	6α-Η	7-H	Others
(3a)	1.24	5.30	5· 3 0	5.58(7 Hz)	2.01, 2.08 (OAc)
(3b)	1.18	4·33(13 Hz)	4·21(8 Hz)	5·79(7 Hz)	1.78(OH)
(3c)	1.47	• •	· · ·	6·48(1 Hz)	

^a Determined at 60 MHz for CDCl_a solutions containing CHCl_a and tetramethylsilane as internal standards.

(6360)] to contain two six-membered ring carbonyl groups, one of which was conjugated. In the n.m.r. spectrum (see Table), the marked downfield shift (0.29 p.p.m.) of the 5 β -methyl resonance on oxidation of diol (3b) is consistent³ with its location adjacent to the C-6 oxygen function.

Full details of this and other related studies will be published later.

The authors acknowledge grants from the Research Committee of the New Zealand Universities Grants Committee.

(Received, March 15th, 1971; Com. 246.)

- J. M. Coxon, M. P. Hartshorn, and C. N. Muir, to be published.
 J. M. Coxon, M. P. Hartshorn, and C. N. Muir, *Chem. Comm.*, 1970, 1591.
 J. W. Blunt, M. P. Hartshorn, and D. N. Kirk, *Tetrahedron*, 1966, 22, 3195.