Evidence for the Aromatic Character of Sulphonium Cyclopentadienylide from Nuclear Magnetic Resonance Measurements

By Z. YOSHIDA,* S. YONEDA, and M. HAZAMA

(Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan)

Summary By analysis of the n.m.r. spectrum of dimethylsulphonium cyclopentadienylide (I) the π -bond orders $(p_{r,s})$ were estimated and found to be within the aromatic range.

FROM the behaviour of dimethylsulphonium cyclopentadienylide (I) towards electrophiles and dienophiles, it has been suggested that (I) is aromatic.¹ Here, we discuss the aromaticity of (I) from its n.m.r. parameters. (I) was prepared according to Behringer and Scheidl² and purified by sublimation at $80^{\circ}/0.002 \text{ mmHg}$, m.p. $129\cdot5-130^{\circ}$. The n.m.r. spectrum of (I) (CDCl₃; Varian HA-100) showed a multiplet centred at τ 3.80 (4H, cyclopentadienyl) and a singlet at 7.40 (Me). The multiplet for the ring protons appears as an AA'BB' type (see Figure 1). The spectrum in Figure 1 was satisfactorily reproduced with a Jeolco JRA-1 computer with the parameters listed in Table 1. The simulated spectrum is given in Figure 2.

According to the proposed relationship between π -bond order $(p_{r,s})$ and the vicinal coupling constant,³ $p_{2,3}$ and $p_{3,4}$ were calculated from the equation $J_{vic} = 7\cdot 12p_{r,s} - 1\cdot 18$. The π -bond orders were also calculated by the HMO and the SCF-MO method (see Table 2).

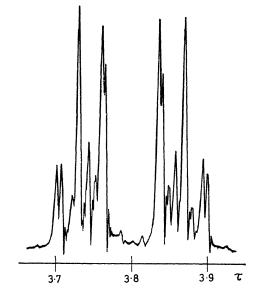
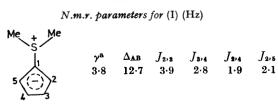



FIGURE 1. N.m.r. spectrum of the ring protons in (I).

The three sets of results all show that although $p_{2,3}$ is somewhat larger than $p_{3,4}$, both values are not very different from each other.

TABLE 1

^a Centre of the ring-protons' signal.

Streitwieser⁴ has suggested that in π -systems single bonds have $p_{r,s} < 0.4$, aromatic bonds have $p_{r,s} = 0.5$ —0.7, and double bonds are characterized by $p_{r,s} > 0.8$. The π -bond orders in our study are clearly in the "aromatic"

TABLE 2

π -Bond	orders	of	(I)
-------------	--------	----	-----

		P2,3	P 8,4
Smith's method ³		 0.71	0.56
HMO method		 0.678	0.626
SCF method	••	 0.704	0.617

range. The ¹³C-H coupling constant of the ring protons of (I) was found to be 162 ± 1 Hz indicating that the cyclopentadienyl carbon atoms of (I) are typical sp^2 carbons. Thus, we conclude that (I) is aromatic.

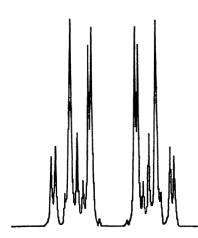


FIGURE 2. Simulated spectrum for the ring protons of (I).

(Received, April 5th, 1971; Com. 496.)

¹ Details will be published elsewhere.

² H. Behringer and F. Scheidl, *Tetrahedron Letters*, 1965, 1757.
³ W. B. Smith, W. H. Watson, and S. Chiranjeevi, *J. Amer. Chem. Soc.*, 1967, 89, 1438.
⁴ A. Streitwieser, "Molecular Orbital Theory for Organic Chemists," John Wiley, New York, 1961, p. 172.