Preparation and Crystal Structure of Fluorophosphinerhodium(I) Complexes

By M. A. Bennett, G. B. Robertson, T. W. Turney, and P. O. Whimp*

(Research School of Chemistry, The Australian National University, P.O. Box 4, Canberra, A.C.T., 2600, Australia)

Summary The preparations of some chlororhodium(I) complexes with diethylaminodifluorophosphine, $PF_2 \cdot NEt_2$ are described; the three-dimensional X-ray structural analysis of cis-[RhCl($PF_2 \cdot NEt_2$)₂(PPh₃)] is also reported.

THE stoicheiometries and properties of low-valent transitionmetal-ion complexes with PF_3 and $PF_{3-n}R_n$ are often similar to those of the corresponding carbonyl complexes.¹ We report here chlororhodium(I) complexes with diethylaminodifluorophosphine, PF_2 ·NEt₂, which show interesting differences from their CO and PF_3 analogues.

Treatment of $[RhCl(PPh_3)_3]$ with $PF_2 \cdot NEt_2$ (1:1 mol ratio) gives $[RhCl(PF_2 \cdot NEt_2)(PPh_3)_2]$ (I) which probably

has the *trans*-configuration of the CO and PF₃ analogues. With an excess of PF₂·NEt₂, however, the yellow diamagnetic complex [RhCl(PF₂·NEt₂)₂(PPh₃)] (II) is formed. Its ¹⁹F n.m.r. spectrum (see Table) shows two doublets, indicative of non-equivalent PF₂·NEt₂ groups, and suggesting a *cis*-arrangement. A *cis*-carbonyl analogue of (II) is known, but it rapidly isomerises to the more stable *trans*-[RhCl(CO)₂(PPh₃)],² which readily reacts with excess of PPh₃ and also disproportionates to give a stable complex *trans*-[RhCl(CO)(PPh₃)₂]. In contrast, there is no evidence for a *trans*-isomer of (II), and all attempts to convert (II) into (I) by reaction with excess of PPh₃ have been unsuccessful.

TABLE

Properties of Rh^I complexes with PF2. NEt2a

Compound	Colour	M.p.	¹ H n.m.r. δ/p.p.m. ^b	$\phi_{\mathbf{F}}^{c} ({}^{1}J_{P-\mathbf{F}} + {}^{3}J_{P-\mathbf{F}})/p.p.m.d$
$\begin{array}{cccc} PF_{2} \cdot NEt_{2} & \cdots & \cdots \\ [RhCl(PF_{2} \cdot NEt_{2})_{2}]_{2} & \cdots & \cdots \\ cis-[RhCl(PF_{2} \cdot NEt_{2})_{2}(PPh_{3})] \\ trans-[RhCl(PF_{2} \cdot NEt_{2})(PPh_{3})_{2}] \end{array}$	Lemon yellow Lemon yellow Yellow	103—104° 123—124° (decomp.) 194° (decomp.)	$\begin{array}{l} 1{\cdot}10(t,Me); 3{\cdot}11(m,CH_2)\\ 1{\cdot}07(t,Me); 3{\cdot}02(m,CH_2)\\ 1{\cdot}02(m,Me); 3{\cdot}27(m,CH_2)\\ 0{\cdot}64(m,Me); 3{\cdot}03(m,CH_2) \end{array}$	

^a m = multiplet, t = triplet, n.m. = not measured.

^b Downfield from internal tetramethylsilane; measured in CDCl₃.

^c Upfield from internal CCl₃F; measured in C₆H₈. ^d Separation (Hz) of doublet due to P-F coupling.

Treatment of the ethylene complex $[RhCl(C_2H_4)_2]_2$ with more than 2 equivalents of PF2·NEt2 in n-pentane gives the

$$[RhCl(PPh_{3})_{3}] \xrightarrow{L} [RhCl(L)(PPh_{3})_{2}]$$
(I)

$$[RhCl(C_{2}H_{4})_{2}]_{2} \xrightarrow{L} [(L)_{2}Rh \xrightarrow{Cl} Rh(L)_{2}] (II)$$

$$[RhCl(C_{2}H_{4})_{2}]_{2} \xrightarrow{L} [(L)_{2}Rh \xrightarrow{Cl} Rh(L)_{2}] (III)$$

$$\downarrow L$$

$$[RhCl(L)_{3}] (IV)$$

 $L = PF_2 \cdot NEt_2$

yellow Cl-bridged dimer [RhCl(PF2·NEt2)2]2 (III) which reacts with PPh₃ to form (II) and also reversibly with excess of $PF_2 \cdot NEt_2$ at -78° to give the yellow monomer $[RhCl(PF_2 \cdot NEt_2)_3]$ (IV). Derivatives corresponding to (III) and (IV) with PF2. NMe2 have been reported, 3 but (IV) has no known analogues in CO or PF₃ chemistry. Thus, condensation of PF₃ onto $[RhCl(PF_3)_2]_2$ at $-196^{\circ 3,4}$ gives a thermally unstable solid, thought to be $[RhCl(PF_3)_4]$, similar to the five-co-ordinate $[IrCl(PF_3)_4]^4$ which is stable at 25° in excess of PF_8 . In its chemistry with rhodium compounds, therefore, $PF_2 \cdot NEt_2$ resembles phosphites, which form both $[RhClL_3']$ and $[RhClL_2']_2$ (L' = phosphite) derivatives,⁵ rather than PF₃.

Crystals of cis-(II) are monoclinic a = 13.37, b = 13.28, c = 17.88 Å, $\beta = 102.68^{\circ}$, Z = 4, space group $P2_1/c$. The 4018 unique reflexions with $F_0^2/\sigma(F_0^2) \ge 3.0$ were collected on a Picker FACS-I automatic diffractometer using crystalmonochromated $Cu-K_{\alpha}$ radiation. With only the Rh, Cl, and P atoms anisotropic, the block-diagonal least-squares analysis converged to a conventional R of 0.074. Data have yet to be corrected for absorption and extinction effects. E.s.d.'s of the bond lengths at the present stage of refinement are: Rh-Cl, 0.002; Rh-P, 0.003; P-F, 0.007; P-N, 0.009; P-C, 0.01; N-C, 0.016; C-C, 0.02 Å.

The geometry at the rhodium atom is essentially squareplanar, with mutually cis-P-bonded PF2. NEt2 ligands (see Figure). In contrast to [RhCl(PPh₃)₃],⁶ which shows a marked distortion towards tetrahedral geometry, the maximum deviation of metal and ligand donor atoms from the co-ordination plane in the present structure is only 0.065 Å. The Rh-Cl bond length [2.375(2) Å] agrees well with previous observations.^{6,7} The Rh-P(3) distance

[2.352(3)] (trans to $PF_2 \cdot NEt_2$) is only slightly longer than that found for [RhCl(CS)(PPh₃)₂] [2.336(2)]⁷ where the PPh₃ groups are trans. Consistent with the increased π-bonding ability of PF2. NEt2 vis-à-vis PPh3, the Rh-P- $(PF_2 \cdot NEt_2)$ distances are significantly shorter than Rh-P(3).

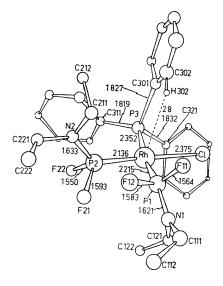


FIGURE. Structure of $[RhCl(PF_2 \cdot NEt_2)_2(PPh_3)]$ (II); although only one orientation is shown, the ethyl group C(121)-C(122) is disordered.

In addition, Rh–P(1) $[2.215(3), trans to PPh_3]$ is significantly longer than Rh-P(2) [2·136(3), trans to Cl-]. This difference of 0.08 Å is similar in magnitude to those observed for M-P bond distances trans to P and Cl- respectively in [RhCl(PPh₃)₃]⁶ and mer-[MCl₃(PPhMe₂)₃],⁸ and it reflects the expectation that PPh_3 is a better σ -donor and π -acceptor than Cl⁻. The phenyl ring C(301-306) and the rhodium atom are almost co-planar, and the Rh-o-hydrogen distance is only 2.8 Å [H(302) calc. assuming C-H 1.1 Å], which may indicate some axial Rh-H interaction.9

The distances P(1)-F(11) and P(2)-F(22) are appreciably shorter than those found in free PF2. NMe2 [electron diffraction, 1.589(3) Å;¹⁰ X-ray diffraction, 1.610(4) Å¹¹]. Similar P-F bond contractions on co-ordination have been observed for Me₂N·PF₂·B₄H₈,¹² PF₃·BH₃,¹³ and Pt(PF₃)₄,¹⁴ and have been attributed to σ -electron donation from the ligand to the metal.¹⁴ The distances P(1)-F(12) and P(2)-F(21) are not significantly different from the value found for $PF_2 \cdot NMe_2$.¹¹ Although the origin of this anomaly is not entirely clear at present, the long P-F bonds may

result from weak C-H \cdots F interactions [C(222)-F(21) 3.24, C(112)-F(12) 3.41 (both intramolecular); C(212)-F(21) 3.37 Å (intermolecular)] and it is noteworthy that the only ethyl group not so linked is disordered (see Figure legend). The P-N distances [average 1.627(9)] are not significantly shorter than that of 1.628(5) found in PF2. NMe2.11 In contrast, the P-N distance in Me₂N·PF₂·B₄H₈ is 1.593(6).¹²

Within experimental error, the two groups of atoms $\lceil P(1) \rangle$, N(1), C(111), C(121)] and [P(2), N(2), C(211), C(221)] are each coplanar. A similar planar arrangement has been observed at the nitrogens in PF2. NMe2 and Me2N. PF2. B,H.,11,12

(Received, May 10th, 1971; Com. 726.)

- ⁴ M. A. Bennett and D. J. Patmore, Chem. Comm., 1969, 1510 and unpublished results.
 ⁵ L. Vallarino, J. Chem. Soc., 1957, 2473; L. M. Haines, Inorg. Chem., 1970, 9, 1517.
 ⁶ P. B. Hitchcock, M. McPartlin, and R. Mason, Chem. Comm., 1969, 1367.

- J. L. de Boer, D. Rogers, A. C. Skapski, and P. G. H. Troughton, Chem. Comm., 1966, 756.
 L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chem. Comm., 1970, 30.

- ⁹ N. A. Bailey, J. M. Jenkins, R. Mason, and B. L. Shaw, *Chem. Comm.*, 1965, 237.
 ¹⁰ G. C. Holywell, D. W. H. Rankin, B. Beagley, and J. M. Freeman, *J. Chem. Soc.* (A), 1971, 785.

- ¹¹ E. D. Morris and C. E. Nordman, *Inorg. Chem.*, 1969, 8, 1673.
 ¹² M. D. La Prade and C. E. Nordman, *Inorg. Chem.*, 1969, 8, 1669.
 ¹³ R. L. Kuczowski and D. R. Lide, *J. Chem. Phys.*, 1967, 46, 357.
 ¹⁴ J. C. Mariott, J. A. Salthouse, M. J. Ware, and J. M. Freeman, *Chem. Comm.*, 1970, 595.

¹ Th. Kruck, Angew. Chem. Internat. Edn., 1967, 6, 53; R. Schmutzler, Inorg. Chem., 1964, 3, 415; C. G. Barlow, J. F. Nixon, and M. Webster, J. Chem. Soc. (A), 1968, 2216. ² G. Deganello, P. Uguagliati, B. Crociani, and U. Belluco, J. Chem. Soc. (A), 1969, 2726; P. Uguagliati, G. Deganello, L. Busetto,

and U. Belluco, Inorg. Chem., 1969, 8, 1625. ⁸ D. A. Clement, J. F. Nixon, and M. D. Sexton, Chem. Comm., 1969, 1509.