Perfluoroalkyl Borate Esters

By D. E. YOUNG,* L. R. ANDERSON, and W. B. Fox

(Corporate Chemical Research Laboratory, Allied Chemical Corporation, Morristown, New Jersey 07960)

Summary The first perfluoroalkyl borate esters have been obtained by the action of perfluoroalkyl hypochlorites on boron trichloride.

ALTHOUGH partially fluorinated alkyl borates may be obtained by reactions of fluorinated alcohols with boron trichloride¹ or by additions of boron halides (except BF₂) to fluoro-ketones,² the perfluoro-analogues may not be obtained in this manner; in the one case the simple aliphatic perfluoro-alcohols are unknown, and in the second case addition of B-F to the carbonyl function does not occur.

In our studies with perfluoroalkyl hypochlorites, we have discovered a novel reaction with boron trichloride in which displacement of chlorine from BCl₃ yields perfluoroalkyl borate esters.

$$\begin{split} & 3\mathrm{R}_{\mathrm{f}}\mathrm{OCl} + \mathrm{BCl}_{3} \longrightarrow (\mathrm{R}_{\mathrm{f}}\mathrm{O})_{3}\mathrm{B} + 3\mathrm{Cl}_{2} \\ & (\mathrm{R}_{\mathrm{f}} = \mathrm{C}_{4}\mathrm{F}_{9}{}^{\mathrm{t}}, \, \mathrm{C}_{3}\mathrm{F}_{7}{}^{\mathrm{i}}, \, \mathrm{or} \, \mathrm{CF}_{3}) \end{split}$$

In the case of $(C_{a}F_{a}^{t}O)_{a}B_{a}$, a typical reaction sequence involved introduction of $C_4F_9^{t}OCl^3$ and BCl_3 in a 3:1 mole ratio into a stainless-steel reactor at -196° . The reactor then was allowed to warm to ambient temperature, was agitated for several hours, and fractionated through lowtemperature traps. This procedure led to the separation and recovery of pure chlorine and colourless, crystalline (C₄F₉^tO)₃B (vapour pressure 1 mm at 25°, m.p. 35°) according to the stoicheiometry of the above equation. The ¹⁹F

n.m.r. spectrum shows a single sharp resonance at ϕ + 68.1 p.p.m. and the ¹¹B spectrum exhibits a singlet at -13.4p.p.m. relative to BF₃OEt₂. A mass spectrum showed the fragments expected for a unimolecular entity, although no parent ion was observed. The i.r. spectrum (60°) of the gas showed absorptions characteristic of B-O, C-F, and C-O bonds at 1422(mw), 1396(s), 1288(vs), 1202(w), 1150(m), 1124(m), 988(s), 952(mw), 730(m), and 534(w) cm⁻¹.

The (C₃F₇iO)₃B and (CF₃O)₃B esters were prepared in similar fashion from BCl₃ and C₃F₇¹OCl⁴ or CF₃OCl,⁴ respectively. The increasing amounts of α -fluorine in their structures, as might be expected, renders them less stable towards fluoride shifts to vacant boron p-orbitals (i.e.,

 $FC-OB \longrightarrow > C=O + FB)$, with the net result that

decomposition leads eventually to BF₃ and carbonyl compounds. In the case of $(C_3F_7^iO)_3B$, decomposition to (CF₃)₂CO and BF₃ occurs slowly at 25° whereas (CF₃O)₃B decomposes to F₂CO and BF₂ above -20° . Thus, preparations must be carried out at temperatures not exceeding -20° in these two cases. The t-butyl ester, $(C_4F_9O)_3B$, with no α -fluorine available for this decomposition mode, is stable indefinitely at room temperature.

The perfluoroalkyl borates are readily hydrolysed and appear to be relatively strong boron Lewis acids from preliminary experiments with various amine bases.

(Received, May 10th, 1971; Com. 731.)

¹ E. W. Abel, W. Gerrard, M. F. Lappert, and R. Shafferman, J. Chem. Soc., 1958, 2895; H. Schroeder, J. Org. Chem., 1950, 25, 1682; H. Landesman and E. B. Klusmann, Inorg. Chem., 1964, 3, 896. ² E. W. Abel, D. J. Walker, and J. N. Wingfield, Inorg. Nuclear Chem. Letters, 1969, 5, 139; G. W. Parshall, Inorg. Chem., 1965, 4, 52.

³ D. E. Young, L. R. Anderson, D. E. Gould, and W. B. Fox, J. Amer. Chem. Soc., 1970, 92, 2313. ⁴ D. E. Gould, L. R. Anderson, D. E. Young, and W. B. Fox, J. Amer. Chem. Soc., 1969, 91, 1310.