Photocatalytic and Thermal Catalytic Reaction of Carbon Monoxide with Nitrous Oxide and Oxygen over Zinc Oxide

By Ken-ichi Tanaka and George Blyholder*

(Department of Chemistry, University of Arkansas, Fayetteville, Arkansas 72701)

Summary The photocatalytic and thermal catalytic oxidation of CO over ZnO is more complex than previously observed in that the illuminated and dark reactions obey different kinetics and that N_2O is also effective in oxidizing CO.

CATALYTIC activity on semiconductor surfaces has most often been studied using ZnO. The oxidation of CO over ZnO by O₂ has been stated¹ to be first order in CO under both dark and illuminated conditions at 400 °C with O₂ less effective in affecting the reaction. We report that N₂O also oxidizes CO on ZnO and that at 200 °C the reaction of CO with either N₂O or O₂ is more complex than observed previously because the light assisted and dark reactions obey different kinetics.

The apparatus and zinc oxide used here are the same as

those used previously to study N₂O decomposition.^{2,3} The reaction was followed by gas chromatographic analysis of N_2 in the reaction of N_2O with CO, and N_2 and O_2 in the case of the competitive reaction of CO with N₂O and O₂. Fresh ZnO which has been oxidized and evacuated at about 410 °C has a high catalytic activity for the reaction of N₂O with CO, but the activity decreases (rapidly at first) with each subsequent run, arriving at a stabilized activity after several runs. The stabilized catalyst gave a reproducible activity if the evacuation time between runs was kept constant. The catalyst used in the dark experiments was evacuated for 1 h at the reaction temperature and the catalyst used for the photocatalytic reaction was evacuated for 10 mins with illumination. In order to avoid complications due to retardation by product CO₂, the initial rates were determined and used to derive rate equations. It was determined that neither thermal nor photocatalytic decomposition of $\rm N_2O$ occur on zinc oxide with a detectable rate at 203 °C.

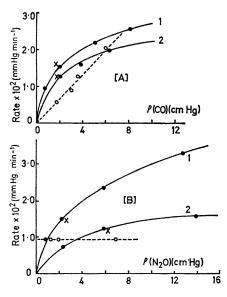


FIGURE 1. Effect of CO pressure on the reaction rates (A) and the effect of N_2O pressure on the reaction rates (B). (A): Photocatalytic reaction. Initial pressures and reaction temperatures. (I) $P(N_2O) = 2\cdot42-2\cdot53$ cmHg; 202-204 °C. (2) $P(N_2O) = 6\cdot05-6\cdot40$ cmHg; 192-193 °C. \bigcirc : Dark reaction at 203 ± 1 °C. +: Estimated values from (B). (B): Photocatalytic reaction. Initial pressures and reaction temperatures. (I) $P(CO) = 1\cdot68-1\cdot75$ cmHg; 201-204 °C. (2) $P(CO) = 1\cdot75-1\cdot85$ cmHg; 193 °C. \bigcirc : Dark reaction at 203 ± 1 °C. (3) $P(CO) = 1\cdot65-1\cdot75$ cmHg; 202-204 °C. (4) $P(CO) = 1\cdot65-1\cdot75$ (5) $P(CO) = 1\cdot75-1\cdot85$ cmHg; 193 °C. \bigcirc : Dark reaction at 201-202 °C. +: Estimated values from (A).

Figure 1 shows that the N₂O reaction with CO on ZnO in the dark may be expressed by the equation rate = $kP(CO)^{1.0}P(N_2O)^0$, but under illumination the markedly different expression, rate = $kP(CO)^{0.4}P(N_2O)^{0.4}$ is obeyed. In the dark, the reaction of N₂O with CO is strongly retarded by oxygen (see Figure 2). The reaction is negligible if the

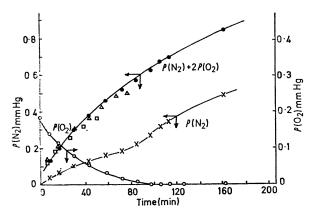


FIGURE 2. Competitive thermal catalytic reaction of CO with N_2O and O_2 at 204 °C. Initial pressures: $P(N_2O) = 2.77$ cmHg; P(CO) = 1.92 cmHg; $P(O_2) = 0.19$ mmHg. \bigoplus : Total reaction; $P(N_2O) + 2P(O_2)$ (reacted). $\triangle: P(CO) = 1.78$ cmHg, $P(N_2O) = 2.31$ cmHg, $P(O_2) = 0$. $\square: P(CO) = 1.69$ cmHg, $P(N_2O) = 2.91$ cmHg, $P(O_2) = 0$.

oxygen pressure is higher than 1 mmHg but under illumination the reaction of N_2O with CO is not retarded by oxygen (Figure 3). In the dark the reaction of N_{gO} with CO accelerates when oxygen is completely removed from the gas phase,

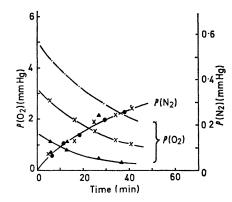


FIGURE 3. Competitive photocatalytic reaction of CO with N₂O and O₂. \bigcirc : $P(N_2O) = 1.53 \text{ cmHg}$, P(CO) = 2.04 cmHg, $P(O_2) = 0.49 \text{ cmHg}$; 190 °C. +: $P(N_2O) = 1.63 \text{ cmHg}$, P(CO) = 1.99 cmHg, $P(O_2) = 0.32 \text{ cmHg}$; 190 °C. \blacktriangle : $P(N_2O) = 1.58 \text{ cmHg}$, P(CO) = 2.05 cmHg, $P(O_2) = 0.15 \text{ cmHg}$; 189 °C.

but the total reaction (Figure 2) gives a smooth curve. From the stoicheiometry of the reactions the rate of CO reaction is equal to the rate of increase of $P(N_2)$ for the reaction with N₂O and equal to twice the rate of decrease in $P(O_2)$ for the reaction with O₂. Thus the total reaction

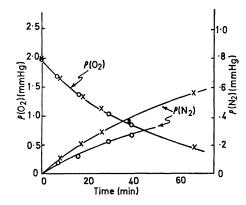


FIGURE 4. Effect of CO pressure on the competitive photoreaction of $N_2O + CO$ and $O_2 + CO$. $\bigcirc: P(O_2) = 0.19$ cmHg, $P(N_2O) = 3.39$ cmHg, P(CO) = 1.35 cmHg, 195 °C. $+: P(O_2) = 0.19$ cmHg, $P(N_2O) = 3.33$ cmHg, P(CO) = 5.04 cmHg, 195 °C.

of CO is proportional to $P(N_2) + 2P(O_2)$ (reacted). This total reaction curve is identical with the reaction curves obtained in the absence of oxygen as plotted (squares and triangles in Figure 2). This indicates that the surface oxide which reacts with CO is the same whether produced from O_2 or N_2O . The fact that the initial reaction rates are first order in CO pressure and zero order in N_2O or O_2 pressure suggests that the active sites on the surface are covered with oxide which reacts in the rate determining step with either gas phase CO or weakly adsorbed CO which is in equilibrium with the gas phase. Equations (1) and (2) show a possible reaction scheme where [] indicates the

$$N_2O(g) \text{ or } O_2(g) + [] \rightarrow [O^*]$$
 (1)

$$[O^*] + CO \rightarrow CO_2 + []$$
 (2)

active surface sites and O* the active oxygen species on the surface may be either neutral or charged. If N₂O is used in reaction (1), gas phase N_2 is also produced. This corresponds to the decomposition of N₂O on highly evacuated ZnO⁴ which produces over 95% N_2 as the gaseous product. The retardation of oxygen in the competitive reaction indicates that the sites are occupied preferentially by the oxygen from gas phase O2 rather than from the decomposition of N₂O.

The reaction of CO with O2 under illumination is obviously much faster than that with N_2O (Figure 3) and the reaction rate is proportional to $P(O_2)^{0.5}$ while being zero order in CO pressure (Figure 4). The fact that the orders, with respect to CO, for the competitive photo-oxidation with N₂O and O₂ are different (see Figure 4), indicates that the CO surface intermediate for the reaction with N₂O is not involved in the slow step of the reaction with O2. Assuming rapid

- ¹ F. S. Stone, Adv. Catalysis, 1962, 13, 1.
- ² K. Tanaka and G. Blyholder, Chem. Comm., 1970, 113.
- K. Tanaka and G. Blyholder, J. Phys. Chem., 1971, 75, 1037.
 J. Cunningham, J. J. Kelly, and A. L. Penny, J. Phys. Chem., 1970, 74, 1992.
- ⁵ T. S. Nagarjunan and J. G. Calvert, J. Phys. Chem., 1964, 68, 17.

$$O_2 (g) \rightleftharpoons 2 O (a)$$
 (3)

$$O(a) + [e^{-}] \rightarrow O^{-}(a) \tag{4}$$

$$O^{-}(a) + CO \rightarrow CO_2 + [e^{-}]$$
⁽⁵⁾

where O (a) is adsorbed oxygen, (4) is the rate determining step and (5) is fast.

Thus the thermal oxidation of CO over ZnO with O₂ and N_2O are similar while the photo-oxidations with O_2 and N_2O are dissimilar to each other.

We acknowledge support, in part, by the Air Pollution Control Office.

(Received, March 18th, 1971; Com. 344.)