X-Ray Determination of the Structure of $Fe(CO)_4(AsC_6F_5)_2$, a Complex containing "Decafluoro-arsenobenzene"

By PATRICIA S. ELMES, P. LEVERETT, and B. O. WEST*

(Department of Chemistry, Monash University, Wellington Road, Clayton, Victoria, Australia 3168)

Summary Tetrakispentafluorophenylcyclotetra-arsine reacts with $Fe(CO)_5$ giving $Fe(CO)_4(AsC_6F_5)_2$, in which the molecule $(AsC_6F_5)_2$ contains an As-As linkage and is bonded by each As atom to Fe; $(PC_6F_5)_4$, however, yields $Fe_3(CO)_9(PC_6F_5)_2$ and traces of $[Fe(CO)_3]_2(PC_6F_5)_4$ under similar conditions.

compounds $[RP(As)]_2$ analogous to azo-derivatives.¹ Reactions likely to produce such compounds give cyclic derivatives containing 4-, 5-, or 6-membered P or As rings. We have now prepared $Fe(CO)_4(AsC_6F_5)_2$ in which the molecule $(AsC_6F_5)_2$ contains an As-As bond and is further stabilized by bonding of each As atom to Fe. The parent arsine may be considered to be "decafluoro-arsenobenzene," an analogue of azobenzene.

THERE have been no previous reports of stable P or As

Tetrakis(pentafluorophenyl)cyclotetra-arsine² reacts with pentacarbonyliron in benzene (120°; 15 h or u.v. irradiation; ca. 60°; 4 h) to form $Fe(CO)_4(AsC_6F_5)_2$ (yellow plates from acetone, m.p. 149-150°). The mass spectrum of the compound shows a parent ion at m/e 652; ions corresponding to $Fe(CO)_2(AsC_6F_5)_2^+$ (m/e 596), $Fe(CO)(AsC_6F_5)_2^+$ (568), $Fe(AsC_{6}F_{5})_{2}^{+}$ (540), and $FeAs_{2}^{+}$ (206) can also be distinguished. The ¹⁹F n.m.r. spectrum shows ortho-, meta-, and para-resonances centred at 117.9, 159.2 and 150.7 p.p.m., respectively, (CFCl_a external ref.). CO stretching frequencies occur in the i.r. spectrum at 2098(s), 2050(s), and 2030(vs) cm⁻¹ (CHCl₃).

 $Fe(CO)_4(AsC_6F_5)_2$ crystallises in the space group C2/c; $a = 23.27, b = 7.79, c = 11.58 \text{ Å}; \beta = 111.5^{\circ}; Z = 4,$ $D_{\rm c}=2.22~{\rm g~cm^{-3}},\, D_{\rm m}~2.17$ —2.28 g cm⁻³ (the exact density was difficult to determine). The structure analysis was based on 725 visually estimated, independent reflections obtained with a Weissenberg camera using $\text{Fe-}K_{\alpha}$ radiation. The structure was solved by three dimensional Patterson and Fourier methods and refined by least-squares analysis to R = 0.13. The isotropic thermal parameters of all the pentafluorophenyl atoms are high (average B is 6.6 Å^2 for carbon and 10.5 Å² for fluorine), but are apparently typical for compounds containing the C_6F_5 group.^{3,4} The structure (Figure) consists of a distorted octahedral arrangement of

FIGURE. Molecular structure of $Fe(CO)_4(AsC_6F_5)_2$. The position of the two-fold axis is shown by a broken line, and bond lengths are in A.

ligands about the central iron atom. The molecule possesses C_{2} symmetry with the iron atom sited on the two-fold axis. Bond distances and angles for the co-ordinating atoms are given in the Table. The As-As distance of 2.388(7) Å is significantly shorter than the As-As distances in the cyclic arsines (AsMe)₅⁵ [2.428(8) Å] and (AsPh)₆⁶

- B. O. West, Rec. Chem. Prog., 1969, 30, 249.
 M. Green and D. Kirkpatrick, J. Chem. Soc. (A), 1968, 483.
 R. W. Baker and P. Pauling, Chem. Comm., 1969, 745.

- ⁶ R. W. Baker and P. Pauling, Chem. Comm., 1969, 745.
 ⁶ R. H. Fenn and G. R. Segrott, J. Chem. Soc. (A), 1970, 3197.
 ⁶ J. H. Burns and J. Waser, J. Amer. Chem. Soc., 1957, 79, 859.
 ⁶ K. Hedberg, E. W. Hughes, and J. Waser, Acta Cryst., 1961, 14, 369.
 ⁷ A. S. Foust, M. S. Foster, and L. F. Dahl, J. Amer. Chem. Soc., 1969, 91, 5633.
 ⁸ P. S. Elmes, M. E. Redwood, and B. O. West, Chem. Comm., 1970, 1120.
 ⁹ H. G. Ang and B. O. West, Austral. J. Chem., 1967, 20, 1133.
 ¹⁰ B. M. Gotzbourg, Chem. Comm., 1060, 048.
- ¹⁰ B. M. Gatehouse, Chem. Comm., 1969, 948.

[2.456(5) Å] but is considerably longer than the As-As 'double bond'' of 2.273(3) Å found in As₂Co₂(CO)₅PPh₃.⁷

TABLE

Intramolecular bond distances (Å) and angles (°) of Fe(CO)₄(AsC₆F₅)₂

Fe-As	2.510(9)	As(1)-Fe-As(2)	56.8(0.3)
Fe-C(1)	1.82(4)	Fe-As(1)-As(2)	$61 \cdot 6(0 \cdot 1)$
$Fe_{-C(2)}$	1.78(4)	Fe-As-C(3)	101.7(1.1)
C(1) = O(1) C(2) = O(2)	1.14(4) 1.10(4)	Fe = C(1) = O(1)	172.5(0.7)
As-As	2.388(7)	10-0(2)-0(2)	110.0(0.1)
As-C(3)	1.95(3)		

The arsenic-pentafluorophenyl bond length is 1.95(3) Å. The eleven atoms of the pentafluorophenyl group are planar within experimental error. Mean distances within this ligand are; C-C, 1.34(5) Å, C-F, 1.39(5) Å. Angles within the ring vary from 111.9 to 125.9°, average value 119.9°.

In contrast to the arsine reaction, $(PC_6F_5)_4^8$ reacts with $Fe(CO)_5$ (160°; 24 h) to yield $Fe_3(CO)_9(PC_6F_5)_2$ and traces of $Fe_2(CO)_6(PC_6F_5)_4$. The compounds were characterized by their mass spectra: $Fe_3(CO)_9(PC_6F_5)_2$; parent ion at m/e 816 which decomposes by loss of 9 CO groups to $Fe_3(PC_6F_5)_2^+$; $Fe_2(CO)_6(PC_6F_5)_4$; parent ion at m/e 1072 which decomposes by loss of 6 CO groups to form $Fe_2(PC_8F_8)_4^+$. The i.r. spectra (chloroform) of these compounds contain no peaks in the bridging carbonyl stretching region [Fe₃(CO)₉- $(PC_{6}F_{5})_{2}$ 2060(s), 2040(s), and 2020br (m) cm⁻¹; Fe₂(CO)₆(PC₆- $F_{5}_{4}2075(s), 2045(s), 2015(s), and 2010(sh) cm^{-1}].$ Consideration of possible structures and application of the EAN rule appears to rule out the existence of a "phosphorobenzene" analogue in $Fe_3(CO)_9(PC_6F_5)_2$ and (A) is suggested as a plausible structure.

 $Fe_2(CO)_6(PC_6F_5)_4$ appears to be a similar compound to those previously obtained with other cyclic phosphines9 and with (AsMe)¹⁰ and hence to contain a bridging chain of P atoms (B).

This work was supported by the Australian Research Grants Committee.

(Received, May 3rd, 1971; Com. 691.)