Tertiary Phosphine and Arsine Complexes of Copper(11)

By R. A. ZELONKA and M. C. BAIRD*

(Department of Chemistry, Queen's University, Kingston, Ontario, Canada)

Summary Copper(II) bishexafluoroacetylacetonate forms green, stable 1:1 adducts with tertiary phosphines.

ALTHOUGH tertiary phosphine complexes of copper(I) are well known, reports of analogous complexes of copper(II) have never been substantiated. The reaction of a tertiary phosphine with a copper(II) salt in a polar solvent has invariably led to a redox reaction and the formation of a copper(1)-phosphine complex.^{1,2} We report that the powerful Lewis acid $Cu^{II}(hfac)_2$ [(hfac) = hexafluoroacetylacetonate] reacts readily with an equimolar amount of triphenylphosphine in non-polar organic solvents to form the dark green, crystalline (m.p. 65-66.5°) complex Cu-(hfac)2, PPh3. The complex is monomeric in chloroform solution, in which it has a magnetic moment at 25 °C of 1.65 B.M. The e.s.r. spectrum in chloroform solution at 25 °C consists of six lines centred at g 2.13 (see Table) and can be interpreted in terms of two overlapping quartets. Although the lower-field lines are broadened because the tumbling rate does not average out the anisotropies, the ratios of the line intensities are, as expected, (ca. 1:1:2:2-:1:1). The copper hyperfine splitting decreases from ca. 71 G in $Cu(hfac)_2$ to ca. 59 G in the phosphine adduct. The phosphorus superhyperfine splitting in the latter is ca. 132 G.

Similar adducts have been formed with PEt₃, PBu₂, PMe₂Ph, PMePh₂, and AsPh₃. These compounds give satisfactory analyses, although the arsine derivative dissociates in chloroform solution, and all are to a certain extent unstable since Cu^{II} is readily reduced. The magnetic moments fall in the range 1.65—1.76 B.M., possibly suggesting slight reduction. Reaction of two mol of triphenylphosphine with one mol of Cu(hfac)₂, either in methanol at room temperature or in the melt *in vacuo* yields yellow crystals of Cu(hfac),2PPh₃, m.p. 153—154°. The oxidized product is a mixture containing hexafluoroacetylacetone and other fluorocarbons with a very irritating odour.

E.s.r. data for phosphine complexes in chloroform solution

Complex			g	$A_{\rm Cu}$ (G)	A_{p} (G)
Cu(hfac) ₂ ·PPh ₃	••	••	2.13	59	132
Cu(hfac) ₂ ·PPh ₂ Me		••	2.13	62	140
Cu(hfac) ₂ ·PPhMe ₂	• •	••	2.14	60	146
$Cu(hfac)_2 \cdot PEt_3$	• •	••	2.13	58	139
Cu(hfac) ₂ ·PBu ₃	••	••	2.13	59	137

We thank the International Nickel Company of Canada for a scholarship to R.A.Z. and the National Research Council of Canada for financial assistance.

(Received, March 29th, 1971; Com. 448.)

¹ W. E. Hatfield and R. Whyman, in 'Transition Metal Chemistry,' ed. R. L. Carlin, Dekker, New York, 1969, Vol. 5, p. 47. ² F. G. Moss and P. H. Op Het Veld, J. Inorg. Nuclear Chem., 1970, 32, 3225.