## <sup>13</sup>C Nuclear Magnetic Resonance Spectra of Some $\pi$ -Allylic-palladium(II) Complexes

By B. E. MANN, R. PIETROPAOLO, and B. L. SHAW\*† (The School of Chemistry, The University, Leeds LS2 9JT)

Summary The <sup>13</sup>C n.m.r. spectra of a number of  $\pi$ -allylicpalladium complexes are reported and the chemical shifts discussed in terms of the nature of the allyl-palladium bonding. ALTHOUGH <sup>13</sup>C n.m.r. spectroscopy has been widely applied to organic chemistry, and it is often possible to predict <sup>13</sup>C chemical shifts within a few p.p.m.,<sup>1</sup> its applications to organometallic chemistry have so far been very limited.<sup>2</sup>

† No reprints available.

We have now examined a number of  $\pi$ -allylic-palladium complexes by <sup>13</sup>C n.m.r. spectroscopy, and the results are given in the Table. The <sup>13</sup>C chemical shifts can be conveniently interpreted using a VB treatment for the allylicpalladium bonding. It would be expected that the canonical forms (Ia) and (Ib) would predominate. This is supported by an MO treatment of diallylpalladium<sup>3</sup> in which it is found that the Pd-C-1 bond overlap population is  $2\frac{1}{2}$ times the palladium-C-2 bond overlap population, and the charge on the allyl group is only -0.151, implying that canonical forms (Ia) and (Ib) are more important than (Ic) or (Id).

One might expect therefore, that the <sup>13</sup>C chemical shift for C-1 (or C-3) of a  $\pi$ -allylic group would be approximately halfway between the values for  $=CH_2$  and  $-CH_2$ -Pd groups.

The <sup>13</sup>C chemical shift of the  $=CH_2$  group can be estimated as ca. 110 p.p.m.<sup>‡</sup> from the <sup>13</sup>C chemical shifts in  $C_6H_{13}CH = {}^{13}CH_2 (114\cdot 3 \text{ p.p.m.})^1 \text{ or } [IrCl_2(CH_2CMe = {}^{13}CH_2)-$ (CO)(AsMe<sub>2</sub>Ph)<sub>2</sub>] (107.9 p.p.m.).<sup>4</sup> The <sup>13</sup>C chemical shift of a -CH<sub>2</sub>-Pd carbon has not been reported but we estimate it to be about +10 p.p.m. as found for the  $-1^{3}CH_{2}$ -Ir of  $[IrCl_2 (CH_2CMe=CH_2)(CO)(AsMe_2Ph)_2] (+10.6 \text{ p.p.m.})^4$  and as estimated for -13CH2-Pt [for a series of methylplatinum-(II) complexes the shifts for <sup>13</sup>Me-Pt are  $+8\cdot1$  to  $-13\cdot4$ p.p.m.,<sup>2,5</sup> *i.e.* averaging *ca.* 0 p.p.m., and the <sup>13</sup>C shifts for  $CH_2$  groups are generally ca. +10 p.p.m. to higher frequency than for Me groups in similar environments].6

Thus, as expected on the VB picture, the values of the <sup>13</sup>C chemical shifts for the C-1 and C-3 atoms of the symmetrically bonded allylic ligands (45.8-65.2 p.p.m.) (see Table) lie approximately halfway between the values for =CH<sub>2</sub> and -CH<sub>2</sub>-Pd carbon atoms. The <sup>13</sup>C shifts of C-2  $(95 \cdot 0 - 129 \cdot 2 \text{ p.p.m.})$  are closer to those of  $= {}^{13}\text{CH}-\text{ or}$ =<sup>13</sup>CMe- groups<sup>1</sup> but moved to lower frequency by *ca*. 20 p.p.m., presumably by contributions from the canonical forms (Ic) and/or (Id). [{The shift of  $=^{13}$ CMe- in [IrCl<sub>2</sub>- $(CH_2CMe = CH_2)(CO)(AsMe_2Ph)_2$  is at +145.2 p.p.m.}

The <sup>13</sup>C n m.r. data for [PdCl(2-methylallyl)(PPh<sub>3</sub>)] are also given in the Table. The asymmetry in bonding of the 2-methylallyl group to palladium was first shown by <sup>1</sup>H n.m.r. spectroscopy<sup>7,8</sup> and represented by the structure (II) in which the dashed line indicates that two carbon atoms are joined by a bond of higher order than the other two (joined by a dotted line). The X-ray structure of [PdCl(2methylallvl)(PPh3)]<sup>9</sup> and of [PdCl(allyl)(PPh3)]<sup>10</sup> show that the asymmetry in the allylic-palladium bonding is in the sense summarised by structure (II). In the <sup>13</sup>C n.m.r. spectrum (Table) two CH<sub>2</sub> groups were detected: a singlet at 62.6 p.p.m. due presumably to the CH<sub>2</sub> trans to chlorine and a doublet  ${}^{2}J(P-C)$  31 Hz shifted ca. 17 p.p.m. to higher frequency and presumably due to the CH<sub>2</sub> trans to the triphenylphosphine. This shift to higher frequency is consistent with an increased olefin character as suggested by the <sup>1</sup>H n.m.r. spectrum and X-ray results.

791

As can be seen from the Table in both the allvl and 2-methylallyl series the <sup>13</sup>C shifts for C-1 and C-3 decrease

13C N.m.r. chemical shifts & for some  $\pi$ -allylic-palladium complexes.

|                                    |     | C-1, C-3     | C-2           | Me           |
|------------------------------------|-----|--------------|---------------|--------------|
| [PdCl(allyl)] <sub>2</sub>         |     | $63 \cdot 2$ | 111.9         |              |
| $[PdBr(allyl)]_2$                  |     | $65 \cdot 2$ | 111.3         |              |
| $[Pd(C_{5}H_{5})(allyl)]$          |     | 45.8         | 95.0          |              |
| $[Pd(acac)(C_3H_5)]$               | • • | 55.8         | 113.5         |              |
| $[PdCl(2-methylallyl)]_2$          |     | 61.7         | 127.9         | $23 \cdot 1$ |
| $[PdBr(2-methylallyl)]_2$          | ••  | 64.4         | $127 \cdot 2$ | $23 \cdot 3$ |
| $[Pd(C_5H_5)(2-methylallyl)]$      | • • | 47.0         | $112 \cdot 2$ | $23 \cdot 6$ |
| [Pd(acac)(2-methylallyl(]          | ••  | 54.8         | $129 \cdot 2$ | 23.4         |
| $[PdCl(2-methylallyl)(PPh_3)]^{b}$ |     | 62.6;        | e             | $24 \cdot 1$ |
|                                    |     | 78-1         |               |              |

<sup>a</sup> The chemical shifts were measured in  $CH_2Cl_2$  solution at ca. 40 °C and are accurate to  $\pm 0.1$  p.p.m. The spectra were measured at 22.62 MHz with random noise decoupling of the protons.  $C_6F_6$  was used as an internal <sup>19</sup>F field/frequency lock.

in the order of trans-ligands  $\mu$ -Br >  $\mu$ -Cl > acetylacetonate  $(acac) > \pi$ -C<sub>5</sub>H<sub>5</sub> and for C-2 in the order acac ~  $\mu$ -Cl ~  $\mu$ -Br >  $\pi$ -C<sub>5</sub>H<sub>5</sub>.



This preliminary investigation suggests that <sup>13</sup>C n.m.r. spectroscopy will be useful in studying allylic-metal complexes.

We thank the S.R.C. and the Italian C.N.R. for generous financial support.

(Received, May 4th, 1971; Com. 703.)

 $\ddagger$  The chemical shifts are quoted with respect to (CH<sub>a</sub>)<sub>a</sub>Si<sup>18</sup>CH<sub>a</sub> and increasing frequency is taken as positive.

- <sup>1</sup> E. F. Mooney and P. H. Winson, Ann. Rev. N.M.R. Spectroscopy, 1959, 2, 153, and references therein.
- <sup>2</sup> A. J. Cheney, B. E. Mann, and B. L. Shaw, Chem. Comm., 1971, 431 and references therein.
- <sup>3</sup> I. H. Hillier and R. M. Canadine, Discuss. Faraday Soc., 1969, 47, 27.
- <sup>4</sup> B. E. Mann, B. L. Shaw, and R. E. Stainbank, unpublished results.
- A. J. Cheney, B. E. Mann, and B. L. Shaw, unpublished results.
  D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., 1964, 86, 2984.
- <sup>7</sup> J. Powell, S. D. Robinson, and B. L. Shaw, *Chem. Comm.*, 1965, 78.
  <sup>8</sup> J. Powell and B. L. Shaw, *J. Chem. Soc.* (A), 1967, 1839.
  <sup>9</sup> R. Mason and D. R. Russell, *Chem. Comm.*, 1966, 26.

- 10 A. E. Smith, Acta Cryst., 1969, 25A [38], 161.