Spectroscopic Properties of '\delta'-Substituted Ketones†

By G. P. Powell and J. Hudec*

(Chemistry Department, The University, Southampton SO9 5NH)

Summary The spectroscopic properties of pairs of epimeric ' δ '-substituted ketones show that in only one of the epimers an interaction between the substituent and the carbonyl group takes place *via* the intervening σ -bonds; c.d. spectroscopy can be used to detect this interaction, but u.v. is not sensitive.

The systematic work of Snatzke and Eckhardt¹ on the spectroscopic properties of ' β ' equatorially and axially substituted adamantanones and the vast amount of other data in the literature^{2,3} on ' α '-substituted ketones have led us to reappraise the various spectroscopic rules and unify them in a generalised manner.⁴

We have shown in the preceding communication⁵ that γ '-substituents interact with the carbonyl group but to a lesser extent than the β '-substituents,¹ which show maximum interaction. We have therefore synthesised ketones with four carbon-carbon bonds between the carbonyl group and the substituent in order not only to test experimentally our rules⁴ but also to establish the magnitude of the interaction. A priori, this interaction might be expected to be greater (cf. ' α ' and ' β ' series) or smaller than in the ' γ ' series depending on whether a conjugative (former case) or inductive type mechanism dominates the coupling. The compounds chosen were 3-axially and 3-equatorially substituted 5 α -cholestan-7-ones (1).

The u.v. spectra exhibit no abnormalities of the $n \to \pi^*$ transition either in the 3-equatorial or in the 3-axial series.

† See footnote to preceding communication for use of ' α ', ' β ', ' γ ', and ' δ '.

This is in contrast to the observations on ' α ' axially⁶ and ' β ' equatorially¹ substituted compounds, which suggests that there is no interaction between the two functional groups in the ' δ '-substituted case.

However, this conclusion is negated by the $\Delta \epsilon$ values of the equatorial substituents in comparison with the axial ones. These trends, albeit attenuated, are identical to those observed in the ' β ' and ' γ ' series.⁵ The equatorial ' δ '-substituted compounds show an increased "octant" trend dependent on the donating properties of the nonbonding orbital of the substituent to the π^* orbital of the

and ' δ ' series indicates strongly that the two functional groups interact by an inductive mechanism which shows an angular dependence.

		u.v	7.	c.d.	
	R	$\lambda_{\max}(nm)$	€	$\lambda_{\max}(nm)$	$\Delta \epsilon$
	∫Н	289	41	291	-0.74
3-equatorial	F	289	35	288	-0.16
	C1	291	42	291	-1.05
	Br	291	48	292	-1.71
	I	259(9	259(980)§		-3.08
	OH	289	39	290	-0.71
	J OAc	291	41	291	-0.33
	O·CO·CMe ₃	292	40	291	-0.40
	O·CO·CF ₃	288	34	290	-0.16
	EtS	288	68	291	-1.77
	EtSO ₂	290	46	290	-1.24
	(N ₃	288	70	290	-0.76
3-axial	ſF	288	44	291	-0.43
	CI	291	38	291	-0.22
	Brt			291	-0.37 ± 0.09
	I†'			290	-0.55 ± 0.31
	d OH	290	40	291	-0.72
	OAc	291	40	292	-0.59
	O·CO·CMe ₃	290	35	290	-0.26
	O.CO.CF3	291	39	290	-0.51
	(N ₃	288	78	292	-0.27

3-Axially and 3-equatorially substituted 5a-cholestan-7-ones in ethanol*

* U.v. and c.d. spectra in n-hexane show the same trends in $\Delta \epsilon$ and ϵ , but the values are all slightly decreased and the λ_{max} values show the expected small red shift and fine structure.

 $\uparrow \Delta \epsilon$ values are calculated from measurements on a mixture of inseparable 3-axial and 3-equatorial epimers' estimated by integration of the 3-epimeric protons in n.m.r. The assumed limit of error in integration is $\pm 6\%$.

 $s n \rightarrow \sigma^*$ of iodine.

carbonyl group via the extended planar **W** path.⁴ The axial substituents show an "antioctant" trend as would be expected from the conformational-path rules for donation.⁴ The gradual decrease in the magnitude of $\Delta \epsilon$ in the ' β ', ' γ ',

These results show that c.d. is a much more sensitive tool than u.v. for probing into long-range interactions between two functional groups.

(Received, December 31st, 1970; Com. 2267.)

¹G. Snatzke and G. Eckhardt, *Tetrahedron*, 1968, 24, 4543; 1970, 26, 1143.

² C. Djerassi, 'Optical Rotatory Dispersion,' McGraw-Hill, New York, 1960; L. Velluz, M. Legrand, and M. Grosjean, 'Optical Circular Dichroism', Verlag Chemie, Weinheim, 1965.

³ P. Crabbé, 'Optical Rotatory Dispersion and Circular Dichroism,' Holden-Day, San Francisco, 1965 and Gauthier-Villars, Paris, 1968.

4 J. Hudec, Chem. Comm., 1970, 829; G. H. Cooper and J. Hudec, in preparation.

⁵ M. T. Hughes and J. Hudec, preceding communication.

⁶ S. F. Mason, Quart. Rev., 1963, 17, 20.

⁷ H. B. Henbest and W. R. Jackson, J. Chem. Soc., 1962, 954.