X-Ray Crystal Structure of Dichlorophthalocyaninatotin(Iv)

By D. Rogers* and Miss R. S. Osborn
(Chemical Crystallography Laboratory, Imperial College, London S.W.7)

Summary The phthalocyanine ring of the dichlorophthalocyaninatotin(Iv) molecule is shown to be substantially 'crumpled'-a stepped deformation-apparently owing to an oversize tin atom.

The structure of $\mathrm{Sn}^{\mathrm{II}}$ phthalocyanine [or $\mathrm{Sn}{ }^{\mathrm{II}}(\mathrm{pc})$ where $\mathrm{H}_{2}(\mathrm{pc})=$ neutral phthalocyanine] shows that the covalent radius of $\mathrm{Sn}^{I I}$ is so grossly oversize for the hole in the macrocycle that the tin atom lies $1 \cdot 11 \AA$ out of the plane of the quartet of ligand nitrogens, and the macrocycle is slightly deformed to a saucer shape. ${ }^{1}$ [A similar deformation of the macrocycle has been reported in $\left.\mathrm{U}^{I V}(\mathrm{pc})_{2}{ }^{2}\right]$. The average of the four $\mathrm{Sn}^{\mathrm{II}}-\mathrm{N}$ distances is $2 \cdot 25 \AA$. Even with the smaller radius of $\mathrm{Sn}^{\mathrm{IV}}$ (ca. $\left.1 \cdot 40 \AA\right)^{3}$ it seemed possible that the tin would be a tight fit in a phthalocyanine ring and that this might lead to the 'ruffling' found in analogous compounds. ${ }^{4-6}$ We report that $\mathrm{Sn}^{\mathrm{IV}} \mathrm{Cl}_{2}(\mathrm{pc})$ is a centrosymmetric molecule with nonplanar deformations about ten times those observed in $\mathrm{Sn}^{I I}(\mathrm{pc})$ and the ruffled ring analogues. It is interesting to compare the present results with those quoted by Cullen and Meyer ${ }^{7}$ on $\mathrm{SnIV}^{I V} \mathrm{Cl}_{2}$ octaethylporphyrin $\left[\mathrm{SnCl}_{2}\left(\mathrm{Et}_{8} \mathrm{pp}\right)\right]$, where the hole is slightly larger and the ring is essentially flat.

Crystals of $\mathrm{Sn}^{\mathrm{NV}}\left(\mathrm{Cl}_{2}(\mathrm{pc}), \mathrm{C}_{32} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{Sn}\right.$, are dark blue monoclinic plates, $a=21 \cdot 104, b=11 \cdot 060, c=11 \cdot 392 \AA$, $\beta=96.04^{\circ}$, space group either $A a$ or $A 2 / a ; Z=4$. Solution of the Patterson map and successful refinement have shown the space group to be $A 2 / a$ and the molecules to be centrosymmetric. 1959 significant reflections were measured on a Siemens single-crystal diffractometer using $\mathrm{Cu}-K_{\alpha}$

Figure 1. Geometric details of the centrosymmetric nolecule of SnCl_{2} (pc). Bond lengths in A; angles in degrees; displacennents of the atoms from the plane of $\mathrm{Sn}-\mathrm{N}(2)-\mathrm{N}(4)$ are shown in parentheses in units of 0.001 A .
Calculated standard deviations: $\mathrm{Sn}-\mathrm{Cl} 0.001 ; \mathrm{Sn}-\mathrm{N} 0.003$; N-C, $\mathrm{C}-\mathrm{C} 0.005 \mathrm{~A}$, all angles $\sim 0.2^{\circ}$.
radiation, and the intensities were corrected for absorption. All the heavier atoms were refined anisotropically and the hydrogens isotropically, and allowance has been made for anomalous scattering by tin. R is now 0.0255 .

The central co-ordination group approximates very closely to a regular square bipyramid, though the $\mathrm{Sn}-\mathrm{Cl}$ axis is tilted 2.5° from the normal to the $\mathrm{Sn}-\mathrm{N}(2)-\mathrm{N}(4)$ plane. This geometry is in agreement with the interpretation of the spectra of this and related molecules. ${ }^{8}$ Distances of the atoms from the $\mathrm{Sn}-\mathrm{N}(2)-\mathrm{N}(4)$ plane (Figure 1) reach $\pm 0.89 \AA$ (while maximum displacements in ruffled analogues are ca. $0 \cdot 07-0 \cdot 10 \AA$). A model shows that the molecule is curled like two half saucers, centrosymmetrically related. The isoindole units are, however, fairly flat and both the $\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\prime}$ and $\mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}$ pairs can be represented as in Figure 2.

Figure 2

For $\mathrm{A}_{1} \mathrm{~A}_{1}^{\prime}$ the offset, Δ, is $0.757 \AA$ and the atoms in each unit are coplanar to $\pm 0.037 \AA$. For $\mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}, \Delta$ is $\pm 0.363 \AA$ and atoms are coplanar to $\pm 0.013 \AA$. No very meaningful best plane can be specified for the macrocycle, but it is clear that the $\mathrm{Sn}-\mathrm{N}(2)-\mathrm{N}(4)-\mathrm{Cl}_{2}$ octahedron is substantially tilted with respect to the general plane. This sort of crumpling might be expected to occur in a centrosymmetric molecule if the central atom is oversize if it is assumed that each isoindole group can hinge round the line BB^{\prime} joining the two bridging atoms B, B^{\prime} which link it to its neighbours. It is of interest, therefore, to compare the lengths of the $\mathrm{Sn}-\mathrm{N}$ bonds and other dimensions in the girdle in this and several related molecules, including metal-free phthalocyanine $\left[\mathrm{H}_{2}(\mathrm{pc})\right]^{9}$ (see Table).

Replacement of the nitrogen bridging atoms by methines will allow a small expansion of the ring, so that the hole in a porphyrin ring will be marginally broader (ca. $0.04 \AA$) than in phthalocyanine, (see Table). However $\mathrm{Sn}^{\mathrm{IV}} \mathrm{Cl}_{2}(\mathrm{pc})$ has, despite the crumpling, the shortest $\mathrm{Sn}^{\mathrm{IV}}-\mathrm{N}$ bonds yet recorded and the most distended phthalocyanine ring. The very close agreement between the $\mathrm{Sn}-\mathrm{Cl}$ bond lengths (Table) is evidence of comparability. The minor difference in the size of the porphyrin and phthalocyanine rings is therefore critical in relation to the covalent radius of $\mathrm{Sn}^{I V}$.

Parts of the macrocycle are only $\sim 3.35 \AA$ from neighbouring rings, but these contacts appear mainly to be a consequence rather than a cause of the crumpling. There is also apparently a chain of intermolecular hydrogen bonds

Bond lengths (A)				
	$\mathrm{H}_{2}(\mathrm{pc})^{\text {a }}$	$\mathrm{Sn}^{\text {II }}$ (pc) ${ }^{\text {b }}$	$\mathrm{Sn}^{1 \mathrm{IVCl}_{2}}(\mathrm{pc})$	$\mathrm{SnivCl}_{2}\left(\mathrm{et}_{8} \mathrm{Pp}\right)^{\text {c }}$
$\mathrm{Md}^{\text {d }}$ N	1.95	2-24, 2-25, 2-25, $2 \cdot 27$	2.050, $2.051(3)$	2.082, 2-104(6)
$\mathrm{M}^{\text {d }}-\mathrm{Be}^{\text {e }}$		3.58, 3.49, 3.61, 3.62	3.398, $3 \cdot 402$	3.43, $3 \cdot 44$
$\mathrm{N}-\mathrm{N}$	2•68, $2 \cdot 84$	2.76, 2-77, 2-77, $2 \cdot 81$	2.903, 2-896	2.94, $2 \cdot 95$
$\mathrm{Sn}-\mathrm{Cl}$			2.448(1)	2-449(2)

${ }^{\text {a }}$ Values from ref 9 . b Values from ref 1. c Values from ref 7. d M denotes Sn or the centre of the ring as appropriate. e B denotes the atom bridging the isoindole or pyrrole rings.
linking Cl with the hydrogen on $\mathrm{C}(13)$, the hydrogen being hydrogen bonds exert a detectable constraint, but do not almost directly in the line joining Cl and $\mathrm{C}(13)[\mathrm{Cl}-\mathrm{H}=2.70$, $\mathrm{Cl}-\mathrm{C}(13)=3.70 \AA]$. A detailed study of the translational and librational motions of this molecule shows that the
cause the crumpling.
We thank Professor J. A. Elvidge for the crystals of $\mathrm{Sn}^{\mathrm{IV}} \mathrm{Cl}_{2}(\mathrm{pc})$.
(Received, May 3rd, 1971; Com. 695.)
${ }^{1}$ M. K. Friedel, B. F. Hoskins, R. L. Martin, and S. A. Mason, Chem. Comm., 1970, 400.
${ }^{2}$ A. Gieren and W. Hoppe, Chem. Comm., 1971, 413.
${ }^{\mathbf{s}}$ L. Pauling, 'The Nature of the Chemical Bond,' Oxford University Press, 1960.
${ }^{4}$ T. A. Hamor, W. S. Caughey, and J. L. Hoard, J. Amer. Chem. Soc., 1965, 87, 2305.
${ }^{5}$ J. L. Hoard, M. J. Hamor, T. A. Hamor, and W. S. Caughey, J. Amer. Chem. Soc., 1965, 87, 2312.
${ }^{6}$ E. F. Meyer, submitted to Acta Cryst.
${ }^{7}$ D. L. Cullen and E. F. Meyer, jun., Chem. Comm., $1971,616$.
${ }^{8}$ M. O'Rourke and C. Curran, J. Amer. Chem. Soc., 1970, 92, 1501.
${ }^{9}$ B. F. Hoskins, S. A. Mason, and J. C. B. White, Chem. Comm., 1969, 554.

