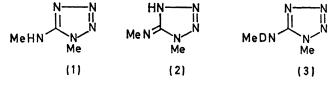
The Tautomeric Structure of 1-Methyl-5-methylaminotetrazole and a Warning regarding Nuclear Magnetic Resonance Spectral Determinations in Deuteriated **Dimethyl Sulphoxide**


By G. BIANCHI and A. R. KATRITZKY*

(School of Chemical Sciences, University of East Anglia, Norwich NOR 88C)

Summary 1-Methyl-5-methylaminotetrazole exists in the amino-form; conclusions to the contrary are shown to be due to deuterium oxide contamination in the $(CD_3)_2SO$ used.

RECENTLY, we drew attention¹ to what we believed to be the erroneous conclusion by Butler² that 1-methyl-5methylaminotetrazole (1) exists in $(CD_3)_2SO$ to the extent of 35% in the imino-form (2). Butler has since disputed our work, and ascribed our result to the use of wet $(CD_3)_2SO.^3$ We have now repeated our earlier n.m.r. work, and again find that in dry (distilled from CaH_2)⁴ (CD₃)₂SO, the n.m.r. of (1) shows the N-methyl protons as a doublet, J 5 Hz, unaffected by the addition of water, but collapsed to a singlet by irradiation at the NH-proton frequency, or by addition of D₂O. Butler's conclusions^{2,3} were based on a three N-Me peak spectrum obtained in $(CD_3)_2SO$: we now present evidence which suggests that this was due to the solvent then used being contaminated with a small quantity of D₃O. The Figure shows the n.m.r. spectra (N-Me region) obtained for the solution in $(CD_3)_2SO$: addition of precise small quantities of D₂O caused the appearance and increase of the third peak [due to the species (3)], which can be caused to disappear again on the addition of H₂O which displaced the equilibrium $[(1) \rightleftharpoons (3)]$ in favour of (1) again. The spectrum reported^{2b} is very similar to that of (c) in the present Figure: Butler quotes^{2b} τ 7.122 and J 5.1 Hz for NHMe and τ 7.135 for NMe; we find τ 7.115 and \int 5.0 Hz for NHMe and τ 7.122 for NDMe; the small isotopic shift is not unexpected.

As Butler points out,³ he is not the first to suggest iminoforms for secondary 5-aminotetrazoles: such conclusions made in 1954 are unacceptable on present knowledge (cf. ref. 5); as regards the work of Scott and Tobin,⁶ quoted in ref. 3, a similar explanation probably applies to their threepeak n.m.r. spectrum, as these authors are aware.⁶

Contrary to an opposite opinion,3 the tautomerism of NH2- and NHMe-compounds is usually very similar, except where steric factors intervene: other substituted aminogroups, e.g. NHSO₂R-compounds, can by contrast show considerably different behaviour.7

Our previous¹ conclusions stand: in addition we caution on the use of commercial (CD₃)₂SO which may contain appreciable quantities of D₂O.

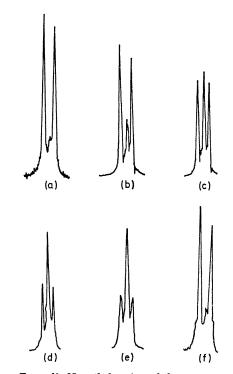


FIGURE. Exocyclic N-methyl region of the n.m.r. spectrum of 1methyl-5-methylaminotetrazole (1 mmol) in (CD3)2SO (dried over CaH₂): initial spectrum (a); and spectra after the addition of (b) 0.8 mmol of D_2O ; (c) 1.2 mmol (total) of D_2O ; (d) 1.6 mmol of D_2O ; (e) 2.0 mmol of D_2O ; (f) 2.0 mmol of D_2O followed by 5.5 mmol of H₂O.

(Received, May 17th, 1971; Com. 768.)

¹ I. J. Fletcher and A. R. Katritzky, Chem. Comm., 1970, 706.

² (a) R. N. Butler, Chem. Comm., 1969, 405; (b) J. Chem. Soc. (B), 1970, 138.

⁸ R. N. Butler, Chem. Comm., 1970, 1096. ⁴ A. F. Cockerill, J. Chem. Soc. (B), 1967, 964.

A. R. Katritzky and J. M. Lagowski, Adv. Heterocyclic Chem., 1963, 2, 75.
F. L. Scott and J. C. Tobin, J. Chem. Soc. (C), 1971, 703.

⁷ For review see A. R. Katritzky and J. M. Lagowski, Adv. Heterocyclic Chem., 1963, 1 and 2; A. R. Katritzky, Chimia (Switz.), 1970, 24, 134.