Transient Species in the Pulse Radiolysis of Periodate Ion in Neutral Aqueous Solutions

By F. BARAT, L. GILLES, B. HICKEL, and B. LESIGNE*

(Service de Chimie Physique, Centre d'Etudes Nucléaires de Saclay, B.P. No. 2, 91-Gif s/Yvette, France)

Summary IO_4^{2-} (ϵ_{360} ca. 1000 M⁻¹ cm⁻¹) ions and IO_4^{*} ϵ_{520} ca. 3000M⁻¹ cm⁻¹) radicals are formed by pulse radiolysis of periodate ion in aqueous solution.

WE have investigated the pulse radiolysis of the periodate ion in aqueous solution. Experiments were performed with a Febetron 707 giving pulses of 15 ns duration at half intensity. Doses were measured using aqueous solutions of 0.1 M-potassium ferrocyanide saturated with N₂O, taking ϵ_{440} [Fe(CN)₆³⁻] = 600 M⁻¹ cm⁻¹ and $G(e_{aq}^-) + G(OH) = 6.4$.

The Figure shows the absorption spectrum between 300 and 600 nm of transient species recorded 100 ns and $1\,\mu s$ after the electron pulse (dose 60 krad) with a $2\cdot 10^{-2}M$ -deaerated periodate solution (pH 5.6).

Two absorption maxima centred around 520 nm (band A) and 360 nm (band B) are observed. The maximum intensity of band A is reached in about $1 \mu s$ with a 10^{-2} M-periodate solution. This absorption is weakly enhanced when the solution is saturated with N₂O and decreased when it is saturated with isobutane used as OH radical scavenger. The disappearance of band A is a second-order reaction with $2k/\epsilon = 3\cdot10^5$ cm s⁻¹, independent of IO₄-concentration. This decay is different in the presence of ethanol; then it is a pseudo first-order process with a rate constant of 5×10^5 s⁻¹ in presence of 0·1M-ethanol.

This transient species, which has also been observed in our laboratory by flash photolysis of deaerated periodate solution $(10^{-4}-10^{-3}M)$, can be ascribed to IO₄⁴ formed by reaction (1) with OH radicals generated by irradiation of

$$IO_4^- + OH^{\bullet} \xrightarrow{k_1} IO_4^{\bullet} + OH^-$$
 (1)

water or in a primary photolytic decomposition process of periodate ion.

In the pulse radiolysis experiments, the time taken to reach the maximum concentration of IO₄ varies with the periodate concentration and with the dose because of the recombination reaction of the OH radicals. We have measured these times for IO₄⁻ concentrations of $2 \cdot 5 \times 10^{-3}$ -10^{-1} M at a dose of 50 krad and, using Schmidt's program,¹ have computed the value of k_1 which best fits the collected results. We find $k_1 = (4 \cdot 5 \pm 0 \cdot 5) \times 10^{8}$ M⁻¹ s⁻¹

Times taken to reach maximum [IO₄] concentration as a function of $[IO_4^-]$ (dose 50 krad). Comparison of experimental and computed results for different values

	Calculated values (μs)				Experimental
[IO ₄ -]	a^a	Рр	C ₆	dq	value (μ s)
$2.5 imes 10^{-3}$ M	>2	> 2	2	1.9	2
10 ⁻² M	>2	2	1.2	0.59	1
2×10^{-2} M	>2	1.2	0.63	0.33	0.6
10 ⁻¹ M	0.60	0.34	0.16	0.08	0.15

^a $k_1 = 1 \times 10^8 \text{ M}^{-1}\text{S}^{-1}$. ^b $k_1 = 2 \times 10^8 \text{ M}^{-1} \text{ S}^{-1}$. ^c $k_1 = 4.5 \times 10^8 \text{ M}^{-1} \text{ S}^{-1}$. ^d $k_1 = 10^9 \text{ M}^{-1} \text{ S}^{-1}$.

(Table). This value is greater than that given in a recent publication concerning γ -irradiation of periodate ion.²

With a dose of 80 krad, the scavenging of OH radicals is quite complete in a 0.3M-periodate solution and the molar extinction coefficient of the IO₄ radical has been determined as ϵ_{520} (IO₄) ca. 3000 M⁻¹ cm⁻¹ taking G(OH) = 3.2. The rate of disappearance of IO₄ radicals is $2k = 9 \times 10^8$ M⁻¹ cm⁻¹.

FIGURE. Absorption spectrum of the transient species observed at 300-600 nm in the pulse radiolysis of a deaerated solution (IO₄-= 2×10^{-2} M, dose 60 krad, pH 5.6) -O-, 100 ns after the electron pulse, -O-, 1 µs after the electron pulse.

The intensity of band B decreases by 80% when the solution of KIO₄ ($2 \cdot 5 \times 10^{-3}$ M) is saturated with N₂O ($2 \cdot 5 \times 10^{-2}$ M) and remains unchanged on addition of alcohols. It is reasonable to assume, therefore, that it is formed by reaction of periodate ions with solvated electrons. Band B is formed immediately after the pulse ($\tau_i \leq 50$ ns, $[IO_4^{--}] = 2 \cdot 5 \times 10^{-3}$ M) and this is in good agreement with the value k ($IO_4^{--} + e_{aq}$) = ($1 \cdot 1 \pm 0 \cdot 15$) $\times 10^{10}$ M⁻¹ s⁻¹ as determined by Anbar and Hart³ at pH 7.

Band B disappears by a second-order reaction with $2k = 2.5 \times 10^{10} \text{M}^{-1} \text{ s}^{-1}$ at $[IO_4^{-}] = 2.5 \times 10^{-3} \text{M}$. The effect of ionic strength on its rate of decay measured in the range $2.5 \times 10^{-3} \text{M} < [\text{KIO}_4] < 2.10^{-2} \text{M}$, shows the product to have a charge of + 4. We assume that the reactions (2a), (2b), and (3) take place. The salt effect does not

$$\mathrm{IO}_4^- + \mathrm{e}^- aq \to \mathrm{IO}_4^{2-}$$
 (2a)

or
$$IO_4^- + e^- aq \to IO_2^{2-} + O_2$$
 (2b)

2 (
$$\mathrm{IO}_4^{2-}$$
 or IO_2^{2-}) \rightarrow product (3)

distinguish between reaction (2a) and (2b): however, in the pulse radiolysis of the iodate ion in alkaline aqueous solution⁴ we have observed a transient species formed by the reaction of O⁻ with IO_3^- which also has a maximum absorption at 360 nm and which we have tentatively attributed to IO_4^{2-} .

The "product" of reaction (3) may be a dimer such as the species observed by Buist et al.⁵ at $pH \ge 7.9$. The molar extinction coefficient of IO42- as determined immediately

after the pulse (< 100 nsec) is ϵ_{360} (IO₄²⁻) ca. 1000m⁻¹ cm⁻¹, taking $G(e_{aq}) = 3.2$.

(Received, March 29th, 1971; Com. 440.)

- ¹ K.Schmidt, A computer program for the kinetic treatment of radiation induced simultaneous chemical reactions, ANL 7199.
 ² S. M. Battacharyya and D. K. Bardham, Bull. Chem. Soc. Japan, 1970, 43, 2808.
 ³ M. Anbar and E. J. Hart, J. Phys. Chem., 1965, 69, 973.
 ⁴ F. Barat, L. Gilles, B. Hickel, and B. Lesigne, submitted for publication to J. Phys. Chem.
 ⁵ G. J. Buist and J. D. Lewis, Chem. Comm., 1965, 66.
 ⁶ G. J. Buist, W. C. P. Hipperson, and J. D. Lewis, J. Chem. Soc. (A), 1969, 307.