Alkylation (or Arylation) of Olefins with Organocobalt Compounds in the Presence of Palladium Salts

By M. E. Vol'PIN,* L. G. VOLKOVA, I. YA. LEVITIN, N. N. BORONINA, and A. M. YURKEVICH

(Institute of Organo-Element Compounds, Academy of Sciences, Moscow, U.S.S.R.)

Summary Organic derivatives of cobalt chelates including methylcobalamine alkylate (or arylate) mono- and di-substituted ethylenes in the presence of bivalent palladium salts at 20—50°; under the same conditions an allylcobalt compound transfers its organic ligand to palladium(II) affording a stable π -allylpalladium complex.

The ability of organocobalt compounds to form carboncarbon bonds is of interest in the study both of biochemical mechanisms involving organocobamides and of vitamin B_{12} models.^{1,2} The availability of some stable, non-toxic simple and substituted alkylcobalt complexes^{3,4} makes their application in organic syntheses attractive, but little progress has yet been made in this field. Recently Schrauzer and Sibert⁵ showed that methyl(pyridinato)cobaloxime reacts with carbon dioxide in presence of dithiols in aprotic media to give acetic acid in low yield. If the Co-C bonds are to be involved in syntheses it seems reasonable to use heavy metal compounds since the lowest alkyl-cobalamines and -cobaloximes readily exchange their organic ligand with mercury salts.⁶⁻⁸ We have thus found that organocobalt compounds alkylate and arylate olefins under mild

Organocobalt compound	Olefin	$\begin{array}{l} Molar \ ratio \\ [R(Co^{III}): olefin: Li_2PdCl_4] \end{array}$	Temperature	Product	Yield (%)°
$MeCo(dmg)_2, H_2O$	Styrene	1:4:2	$20-25^{\circ}$	Propenylbenzene ^a	64
MeCo(dmg)2.py	,,	1:4:3	"	**	76
"	Hex-1-ene	1:4:2	"	Hept-2-ene	32
**	Oct-1-ene	1:2:1	**	Non-2-ene	20
**	Cyclohexene	1:2:1	**	1-Methylcyclohexene	1
>>	Vinyl acetate	1:2:1	**	Propenyl acetate	20
**	Methyl acrylate	1:1:1	"	Methyl crotonate	7
MeCo(salen),H ₂ O	Styrene	1:4:2°	**	Propenylbenzene	41
Methylcobalamine	"	1:4:3		32	24
PhCo(dmg 2,py	"	1:4:2	50°	trans-stilbene	4

^a Identified by g.l.c. on Apiezon L, Reoplex-400, and Carbowax 20 M. ^b Identified by means of g.l.c., t.l.c. on alumina, and u.v. spectra. ^c NaOAc (2 mol.) added. ^d Based on g.l.c. analyses.

conditions in the presence of palladium salts. The organic

$$R^{1}-(Co^{III}) + {}_{R^{2}} \rangle = \langle {}^{H} \xrightarrow{Pd^{2+}} {}_{R^{2}} \rangle = \langle {}^{R^{1}}$$
(1)

derivatives of cobaloximes, RCo(dmg),B and bis(salicylidenato)ethylenediaminecobalt $RCo(salen), B (B = H_0O or$ py) as well as methylcobalamine were used as alkylating (or arylating) agents. Various polar solvents (Me₂CO, tetrahydrofuran, MeCN, or HCONMe₂) can be used, but the best results were obtained in methanol (Table).

Transfer of the alkyl or aryl portion to the double bond probably proceeds via formation of a labile σ -organopalladium compound [equation (2)]. The latter then reacts with

$$R-(Co^{III}) + PdCl_{2} \longrightarrow R-PdCl$$
 (2)

olefin, as assumed by Heck⁹ who used non-transition metal organic derivatives in combination with palladium salts as

- ² H. P. C. Högenkamp, Ann. Rev. Biochem., 1908, 37, 225.
 ² B. C. McBride, J. M. Wood, J. W. Sibert, and G. N. Schrauzer, J. Amer. Chem. Soc., 1968, 90, 5276.
 ³ G. N. Schrauzer and R. J. Windgassen, J. Amer. Chem. Soc., 1966, 88, 3738.
 ⁴ G. N. Schrauzer and R. J. Windgassen, J. Amer. Chem. Soc., 1967, 89, 1999.
 ⁵ G. N. Schrauzer and J. W. Sibert, J. Amer. Chem. Soc., 1970, 92, 3510.
 ⁶ J. M. Wood, F. Scott Kennedy and C. G. Rosen, Nature, 1968, 220, 173.
 ⁷ H. A. O. Hill, J. M. Pratt, S. Ridsale, R. F. Williams, and R. J. P. Williams, Chem. Comm., 1970, 341.
 ⁸ G. N. Schrauzer, G. H. Weber, T. M. Beckham, and R. K. Y. Ho, Tetrahedron Letters, 1971, 275.
 ⁹ R. F. Heck I. Amer. Chem. Soc., 1968, 90, 5518.
- ⁹ R. F. Heck, J. Amer. Chem. Soc., 1968, 90, 5518.
- ¹⁹ S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1963, 4806.
 ¹¹ W. T. Dent, R. Long, and A. J. Wilkinson, J. Chem. Soc., 1964, 1585.

alkylating and arylating agents. When a stable organopalladium compound might be expected to be formed [i.e.]in the reaction of allyl(pyridinato)cobaloxime and lithium chloropalladate] under the same conditions (room temp.; MeOH), bis- $(\pi$ -allylpalladium chloride) was actually isolated.

 $CH = CH - CH_2Co(dmg)_2$, py (0.5 mmol) and Li_2PdCl_4 (1.5 mmol) in MeOH (10 ml) were stirred for 10-12 h at room temperature. Solid was filtered off, and the filtrate was poured into water and extracted with chloroform. The chloroform solution was dried (CaCl₂) and evaporated in vacuo. The product had m.p., i.r., n.m.r., and visible spectra which were similar to those for bis- $(\pi$ -allylpalladium chloride).^{10,11} The transfer of organic ligands from similar cobalt complexes to organic substrates by means of other transition metal compounds is under investigation.

(Received, May 10th, 1971; Com. 744.)