X-Ray Crystal Structure of μ -5-Cyclopentadienylcyclopentadiene-bis-(π -cyclopentadienylplatinum)-Pt-Pt

By K. K. Cheung

(Chemistry Department, University of Hong Kong, Hong Kong)

R. J. CROSS,* K. P. FORREST, and R. WARDLE

(Chemistry Department, University of Glasgow, Glasgow W.2)

and M. MERCER

(A.R.C. Unit of Structural Chemistry, Inveresk House, London W.C.2)

Summary The product of the reaction between C_5H_5Na and PtCl₂ is shown by X-ray crystal structure analysis to consist of two π -cyclopentadienylplatinum units joined by a Pt-Pt bond and a bridging 5-cyclopentadienylcyclopentadiene unit.

The green, diamagnetic complex $[(C_{20}H_{20})Pt_2]$, prepared by treating PtCl, with C₅H₅Na in hexane, has been reported¹ and assigned the structure $[(C_5H_5)_4Pt_2]$ with a Pt-Pt bond and π - and σ -bonded cyclopentadienyl rings in rapid, valence-tautomeric equilibria. We questioned this structure on two counts. First, such a structure would place a formal valency of three on each platinum atom making the diamagnetism of the complex difficult to explain. Secondly we did not observe the expected change² in the n.m.r. spectrum of a $[{}^{2}H_{8}]$ toluene solution of the complex on cooling to -95 °C.

Crystals of $[(C_{20}H_{20})Pt_2]$ were prepared for X-ray study as previously described.¹ The crystals are monoclinic, a = 16.43, b = 5.64, c = 17.11 Å, $\beta = 92.7^{\circ}, D_{\rm m} = 2.71, Z$ = 4, $D_c = 2.728$, space group, $P2_1/c$. Cu- K_{α} radiation and equi-inclination Weissenberg methods were used with a small crystal sealed in a capillary tube rotating about b. The structure was determined by the heavy-atom method. Based on 1332 independent reflections, the structure was refined by least-squares, and R = 14.0% at present. The structure is shown (Figure) and the Pt-C distances in the π -bonded systems are listed (Table). The e.s.d of the

TABLE

Bond lengths (Å)

			0 ()		
Pt(1)-C(1)	••	2.33	Pt(2) - C(6)	••	2.36
Pt(1)-C(2)	••	2.36	Pt(2)-C(7)	••	2.09
Pt(1) - C(3)	••	2.24	Pt(2)-C(8)	• •	2.33
Pt(1)-C(4)	••	2.21	Pt(2)-C(9)	••	2.39
Pt(1)-C(5)	••	2.32	Pt(2)-C(10)	••	2.22
Pt(1)-C(13)	••	2.03	Pt(2)-C(11)	••	2.00
Pt(1)-C(14)	••	2.03	Pt(2) - C(12)	••	$2 \cdot 12$

Pt-Pt bond is 0.004 and those involving carbon atoms are 0.08-0.09 Å at this stage.

The complex contains a platinum-platinum bond, with a π -cyclopentadienyl ring bound to each metal atom. The Pt-Pt distance is 2.581 Å, slightly less than the value of 2.65 Å obtained for the single covalent Pt-Pt bond in $[Pt_2S(CO)(PPh_3)_3]$, the only compound containing a Pt-Pt bond previously examined.³ The average distance of each

platinum atom from the carbon atoms of their π -cyclopentadienyl rings is ca. 2.3 Å. The corresponding distance in $[(\pi-C_5H_5)PtMe_3]$, the only other cyclopentadienylplatinum complex of known structure,⁴ is 2.2 Å.

FIGURE. Arrangement of molecules in [(C20H20)Pt2] viewed along the b-axis.

The most interesting feature of the structure is the presence of the hitherto unsuspected 5-cyclopentadienylcyclopentadiene unit bridging the two metal atoms. Each platinum atom bonds to one of the olefinic links of one of the C₅ rings, and the Pt-C distances are ca. 2.05 Å, comparable to those in Zeisé's salt and related compounds. The second ring of the $C_{10}H_{10}$ group is directed away from the platinum atoms and is uncomplexed. The only comparable structures are those reported for the dimers [Rh₂- $C_{20}H_{20}$] and $[Ir_2C_{20}H_{20}]$.⁵ Here, two π -cyclopentadienylmetal units are believed to be bridged by 5-cyclopentadienylcyclopentadiene, but no metal-metal bonds are present and all the olefinic links are co-ordinated to the metals.

We thank Johnson, Matthey, and Co. for a loan of platinum chloride, and one of us (R.W.) thanks the Carnegie Trust for Scotland for a maintenance grant.

(Received, May 3rd, 1971; Com. 673.)

- J. L. Calderon, F. A. Cotton, B. G. DeBoer, and J. Takats, J. Amer. Chem. Soc., 1970, 92, 3801.
 A. C. Skapsi and P. G. H. Troughton, Chem. Comm., 1969, 170.
- ⁴ V. A. Simion, A. Z. Rubezhov, Yu. T. Struchov, and S. P. Gubin, J. Struct. Chem., 1969, 10, 144.
- ⁵ E. O. Fischer and H. Wawersik, J. Organometallic Chem., 1966, 5, 559.

¹ E. O. Fischer and H. Schuster-Woldan, Chem. Ber., 1967, 100, 705.