Preparation and Crystal Structure of the Hg₃²⁺ Ion

By C. G. DAVIES, P. A. W. DEAN, R. J. GILLESPIE,* and P. K. UMMAT (Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary The new compound $Hg_3^{2+}(AsF_6)_2$ containing mercury in the oxidation state of $+\frac{2}{3}$ has been obtained by the reaction of mercury with arsenic pentafluoride in liquid SO₂; the Hg_3^{2+} ion which is shown, by X-ray methods, to be linear and symmetrical is also obtained when mercury is dissolved in fluorosulphuric acid.

WHEN mercury in liquid SO₂ is treated with an equimolar amount of AsF₅ golden crystals are immediately formed which react further giving a pale yellow solution in SO_2 . On removal of volatile material a light yellow solid (1), for which analytical data give the composition $Hg_3(AsF_6)_2$, is obtained [see equation (1)]. Further oxidation of (1) with AsF_5 in SO_2 gives white $Hg_2(AsF_6)_2$. (1) can also be

$$3Hg + 3AsF_5 \rightarrow Hg_3(AsF_6)_2 + AsF_3$$
 (1)

prepared by treating $Hg_2(AsF_6)_2$ dissolved in SO_2 with an equimolar amount of elemental mercury when the initially colourless solution gradually becomes pale yellow and on removal of SO_2 (1) is obtained [equation (2)]. The room temperature ¹⁹F n.m.r. spectrum of (1) in acetone, with

$$Hg_{2}(AsF_{6})_{2} + Hg \rightarrow Hg_{3}(AsF_{6})_{2}$$
(2)

which some reaction occurs, showed at ϕ +63.5, the characteristic 1:1:1:1 quartet of the AsF_6^- anion (*J ca.* 930 Hz). In the i.r. spectrum of a Nujol mull of (1) a strong band was observed at 699 cm⁻¹ which can be assigned as the ν_3 vibration of AsF_6- . The Raman spectrum of (1)showed bands at 373, 570, and 674 cm⁻¹ which may be assigned to v_5 , v_2 , and v_1 vibrations of AsF₆⁻. We conclude that (1) should be formulated as the ionic compound $Hg_{3^{2+}}(AsF_{6})_{2}$. A solution of (1) in SO₂ shows a single strong polarised band at 118 cm⁻¹ which must be assigned as a Hg-Hg stretch indicating that the Hg₃²⁺ cation is linear with the structure +Hg-Hg-Hg+. We have observed the stretching frequency of the Hg_{2}^{2+} ion at 182 cm^{-1} in an aqueous solution of $Hg_2(NO_3)_2, 2H_2O$. A value of 169 cm⁻¹ has been previously reported for this solution.¹

- ¹ L. A. Woodward, Phil. Mag., 1934, 18, 823.
 ² J. Meyer and G. Schramm, Z. anorg. Chem., 1932, 206, 24.
 ³ G. Torsi and G. Mamantov, Inorg. Nuclear Chem. Letters, 1970, 6, 843.

Mercury has been previously found to dissolve slowly in fluorosulphuric acid at room temperature.² We find that a yellow solution is produced the Raman spectrum of which shows a strong polarised band at 113 cm⁻¹ indicating the presence of the Hg₃²⁺ ion. The yellow solution is very slowly further oxidised to give the colourless Hg_2^{2+} cation. The absorption spectra of a solution of (1) in HSO₃F and of Hg in HSO₃F are identical having a strong peak at 248 nm, the tail of which extends into the visible region.

X-Ray diffraction studies on a single crystal obtained from SO₂ solution gave the following results: $Hg_3(AsF_6)_2$, M = 979.6, monoclinic, a = 5.9 7,b = 8.84, c = 11.21Å, $\beta = 90.0^{\circ}$, U = 591.1 Å³, Z = 2, $D_c = 5.50$; space group $P2_1/c$. Integration of precession photographs gave preliminary intensity measurements for 45 hol and 34 hh0 reflections and these were used to calculate two Patterson projections from which the co-ordinates of the mercury atoms were obtained. Calculation of electron density projections using these co-ordinates enabled the position of the arsenic atoms to be found. With two cycles of leastsquares refinement with isotropic temperature factors for mercury and arsenic, the conventional agreement index was reduced to 0.11 for 60 observed reflections and to 0.13 for the complete data set. Since the space group is centrosymmetric and since two of the six mercury atoms are situated at special positions $(000, 0\frac{1}{2}\frac{1}{2})$ the Hg₃²⁺ ion must be linear and symmetric. The Hg-Hg bond length is 2.55 ± 0.01 Å. The Hg-Hg bond length has been found to vary from 2.43 Å in Hg₂F₂ to 2.69 Å in HgI₂.

Added in proof. Since this communication was submitted we have become aware of the work of Torsi and Mamantov³ who have obtained evidence for Hg₃²⁺ from studies of the absorption spectra and polarography of solutions obtained when mercury is added to an AlCl₃-NaCl melt containing Hg₂Cl₂.

(Received, March 16th, 1971; Com. 306.)