Reactions of Cyclopropanes with Dicarbonylchlororhodium: Carbonyl Insertion and Isomerisation

By K. G. Powell and F. J. McQuillin*
(Department of Organic Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU)

Summary With $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$, substituted cyclopropanes undergo stereoselective ring-fission with the formation of carbonyl inserted and/or olefinic products.

Transition-metal-catalysed isomerisation reactions of strained cycloalkanes are of some current interest. Examples of isomerisation catalysed by suitable Rh^{I} complexes ${ }^{1}$ or Ag^{+}salts ${ }^{2}$ are numerous. However, carbonyl insertion by means of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right.$, exemplified for cyclopropane, ${ }^{3}$ quadricyclene, ${ }^{4}$ and cubanes, ${ }^{5}$ may represent a related process. We have therefore examined this reaction for various cyclopropanes to establish the preferred mode of ring-fission, and the extent of any concomitant isomerisation.

Dicarbonylchlororhodium was kept with excess of the cyclopropane in a sealed tube at $50-60^{\circ}$ for some days. ${ }^{3}$ Phenylcyclopropane gave a derivative in 75% yield, shown to be (1), which precipitated, and benzylcyclopropane, similarly, gave a product (70%), (2), which although more soluble also crystallised from the reaction mixture. The product, (5), from bicyclo[4, 1,0]heptane was isolated (yield 90%) only after removal of the excess of bicycloheptane in
vacuo, and whilst n-hexylcyclopropane appeared to react, no rhodium derivative could be isolated, and on cooling to -78° only $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ precipitated, and was identified.
I.r. data (ν_{co}) for (1), (2), and (5) and their triphenylphosphine derivatives: (RCO) $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}, \quad \mathrm{R}=\mathrm{PhC}_{3} \mathrm{H}_{5}$ (7), $\mathrm{R}=\mathrm{PhCH}_{2} \mathrm{C}_{3} \mathrm{H}_{5}$ (8), and $\mathrm{R}=\mathrm{C}_{7} \mathrm{H}_{12}$ (9) are given in the Table together with $\nu_{c o}$ values for the already known corresponding derivatives obtained from cyclopropane. ${ }^{3}$

Structures (1), (2), and (5) depend on analysis, mass spectra, which gave only the hydrocarbon ions, $m / e 118$, 132, and 96 , respectively, and on sodium borohydride reduction from which the organic moiety could be isolated as an alcohol.
In this way (phenylketotrimethylene)carbonylchlororhodium, (1) gave an alcohol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}(\mathrm{m} / e \mathrm{l} 150)$, homogeneous to g.l.c., and with an n.m.r. spectrum: $\tau 2.9(5 \mathrm{H})$, $6.49(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{s})$, and $8.44(4 \mathrm{H}, \mathrm{m})$. These data, and in particular the absence of signals attributable to a CH_{3} or $\mathrm{CH}_{3} \mathrm{CH}_{2}$ group, identify this product as 4-phenylbutan-1-ol (3), and the parent complex as (I).

The benzylcyclopropane complex similarly gave an
alcohol, $m / e 164=\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$, with an n.m.r. spectrum: $\tau 2.82(5 \mathrm{H}), 6.35(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{m}), 8.3-8.8$ $(3 \mathrm{H}, \mathrm{m})$ and $9 \cdot 12(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$. Of the possible alternatives, these data identify this alcohol as (4), and the parent complex as (2). Thus phenyl- and benzyl-cyclopropane differ in reacting at the more and the less substituted edge of the cyclopropane ring, respectively.

(1)
$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{OH}$
(3)

(5)

(2)
$\mathrm{PhCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (4)

(6)

The bicyclo $[4,1,0]$ heptane complex on borohydride reduction gave an alcohol, which the n.m.r. spectrum: $\tau 6 \cdot 46$ $(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 8 \cdot 0(1 \mathrm{H}, \mathrm{s}), 8.55(10 \mathrm{H}, \mathrm{m}$.$) and 9.14(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}$), identified as (6), and hence the rhodium carbonyl complex as (5). The alcohol (6) failed to give the molecular ion, but an ion $M-18$ (110) was observed together with strong fragment ions: $m / e 97\left(M-\mathrm{CH}_{2} \mathrm{OH}\right), 82\left(M-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{OH}-\mathrm{CH}_{3}\right)$, and $55=\mathrm{CH}_{3}$-allyl ${ }^{+}$.

These examples indicate significant selectivity in the direction of ring fission.

Table
$v_{\mathrm{co}} \mathrm{cm}^{-1}$ (KBr disc)
$\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}$ Complex
$\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}$ Derivative
(1) $1600,1640,2080$
(2) $1715,1735,2060$
(5) $1735,1755,2050$
$\mathrm{a} 1730,1745,2041$
(7) 1640
(8) 1630
(9) 1605
a 1670
${ }^{\text {a }}$ From ref. 3 for the corresponding products obtained from cyclopropane.

The product (1) shows an anomalously low $v_{c o}$ for the inserted carbonyl group, although ν_{co} for the terminal
carbonyl is normal, and the anomaly disappears in the triphenylphosphine derivative (7). The structure (1) provides no evident explanation; $>\mathrm{CO}-\mathrm{Rh}$ bonding in the crystals may be responsible.

After treatment with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ the recovered excess of cyclopropane was generally found to contain olefinic products. Phenylcyclopropane gave propenylbenzene and a little α-methylstyrene. Benzylcyclopropane gave 2 -methyl3 -phenylprop-1-ene, m / e 132, characterised by n.m.r. Bicyclo $[4,1,0]$ heptane was also found to be isomerised, although more slowly, to give methylenecyclohexane. n -Hexylcyclopropane, which gave no complex, was found on recovery to contain $\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{13} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{3}$, identified by n.m.r. comparison, in a ratio of $c a .3: 1$. Thus in insertion and isomerisation the modes of ring-fission correspond.

The complex (1) treated with an excess of triphenylphosphine in hot chloroform gave propenylbenzene and $\mathrm{RhCO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$, and phenylcyclopropane kept with the pre-formed complex (1) for 14 days at 60° gave some propenylbenzene.

These observations suggest a common reaction pathway in which an intermediate (10) may be trapped by carbonyl insertion, or isomerised by hydrogen transfer.

[^0]
[^0]: ${ }^{1}$ H. Hogeveen and H. C. Volger, J. Amer. Chem. Soc., 1967, 89, 2486; Chem. Comm., 1967, 1133; H. C. Volger, H. Hogeveen, and M. M. P. Gaasbeek, J. Amer. Chem. Soc., 1969, 91, 2137; T. J. Katz and S. Cerefice, Tetrahedron Letters, 1969, 2509; P. E. Eaton and S. Cerefice, Chem. Comm., 1970, 1494; P. G. Gassman and F. J. Williams, J. Amer. Chem. Soc., 1970, 92, 7631.
 ${ }^{2}$ R. Pettit, H. Sugahara, J. Wristers, and W. Merk, Discuss. Faraday Soc., 1969, 47, 71; J. Wristers, L. Brenner, and R. Pettit, J. Amer. Chem. Soc., 1970, 92, 7499; W. G. Dauben, M. G. Buzzolini, C. N. Schallhorn, D. L. Whalen, and K. J. Palmer, Tetrahedron Letters, 1970, 787; L. A. Paquette and J. C. Stowell, J. Amer. Chem. Soc., 1970, 92, 2584; L. A. Paquette, G. R. Allen, and R. B. Henzel, ibid., p. 7002; L. A. Paquette, ibid., p. 5765; L. Cassar, P. E. Eaton, and J. Halpern, ibid., p. 6366; L. A. Paquette, R. S. Beckley, and T. McCreadle, Tetrahedron Letters, 1971, 775; H. H. Westberg and H. Ona, Chem. Comm., 1971, 248.
 ${ }^{3}$ D. M. Roundhill, D. N. Lawson, and G. Wilkinson, J. Chem. Soc. (A), 1968, 845.
 ${ }^{4}$ L. Cassar and J. Halpern, Chem. Comm., 1970, 1182.
 ${ }^{5}$ L. Cassar, P. E. Eaton, and J. Halpern, J. Amer. Chem. Soc., 1970, 92, 3515.

