Chlorodifluorosulphur(vi) Oxide Hexafluoroarsenate(v), OSClF₂+AsF₆-

By C. LAU and J. PASSMORE*

(Department of Chemistry, University of New Brunswick, Fredericton, N.B., Canada)

Summary Chlorodifluorosulphur(VI) oxide hexafluoroarsenate has been prepared by the reaction of 2ClF, AsF_5 , and OSF_2 at room temperature and at -78° .

The hitherto unreported $OSClF_2^+AsF_6^-$ has been prepared by the reaction of 2ClF, AsF_5 , and OSF_2 . In a typical reaction 0.075 mmoles of OSF_2 was condensed on to 0.075 mmoles of 2ClF, AsF_5^{-1} in a Kel-F trap and the mixture was chlorine. The mass spectrum of the solid at 140° by the direct inlet method included peaks attributable to $OS^{37}ClF_2^+$ (2·8), $OS^{35}ClF_2^+$ (6·9), OSF_3^+ (15), OSF_2^+ (41), SF_2^+ (6), OSF^+ (100), SF^+ (16), SO^+ (43), $^{37}Cl^+$ (6), $^{35}Cl^+$ (27), F^+ (16), AsF_4^+ (58), AsF_3^+ (25), AsF_2^+ (50), AsF^+ (8), As^+ (7), consistent with decomposition of $OSClF_2AsF_6$ into $OSClF_3$ and AsF_5 . The most abundant ion in the mass spectrum of OSF_4 is OSF_3^+ ;² it is possible that $OSClF_3$, if formed,

The vibrational spectrum of OSCIF₂⁺, AsF₆⁻

OPCIF ₂ ⁶		OSCIF ₂ +AsF ₆ -		
Raman 1358 cm ⁻¹	I.r. 1384 cm ⁻¹	Raman 1466 cm ⁻¹	I.r. 1470 cm ⁻¹	Assignment v(S–O)
948 895	960 900	984 927	980 925 820 (v. weak) 690	$v_a(S-F)$ $v_g(S-F)$ imp? AsF_g^-
618	623	681 650 575 522 (v. weak)	638 580 (weak)	As F_{6}^{-} v(S-Cl) As F_{6}^{-} imp?
424	419 412	456	457	OSCIF ₂ ⁺ bending mode
410	406	442	442	OSClF_2^+ bending mode
274	274	396 (v. weak) 371 308 298		imp? AsF ₆ - OSClF ₂ + bending mode

warmed and cooled between -78° and -30° for 2 h. The weight of solid formed corresponded to the formation of 0.075 mmoles of OSClF₂AsF₆, consistent with the equation,

$$OSF_2 + 2ClF$$
, $AsF_5 = OSClF_2AsF_6 + ClF$.

When the components were kept at -78° for 1 h, the yield was 70%; overnight, 100%. At ambient temperatures and pressures, the reaction was instantaneous. OSF_3AsF_6 was also formed in these reactions in varying amounts.

The empirical formula $(OSCIF_2ASF_6)$ was supported by elemental analysis for sulphur, fluorine, arsenic, and

readily dissociates to OSF_2 and CIF at 140° . The i.r. spectrum of the gaseous products of the reaction $OSCIF_2$ -AsF₆ and CsF in anhydrous hydrogen fluoride showed the presence of OSF_4 , O_2SF_2 (trace), and OSF_2 . Chlorine monofluoride, another possible reaction product, was not readily detected because of its weak absorption in the i.r. spectrum. However, the reaction of $OSCIF_2AsF_6$ and CsF at 80° in the presence of sulphur dioxide included O_2SCIF .

The ¹⁹F n.m.r. of $OSClF_2^+AsF_6^-$ in a large excess of anhydrous HF at room temperature showed a single peak at 271 p.p.m. downfield from that of the solvent. The lack of a fluorine resonance attributable to AsF_6^- in similar compounds^{3,4} has been attributed to solvent exchange.³

The chemical shift of $OSCIF_2^+$ is in about the expected region by comparison with OSF₃⁺, OPF₃ and OPCIF₂ assuming $\delta_{\text{CCl},\text{F}}$ (HF) = 201 p.p.m.⁵

$\delta_{CCl_3F} p.p.m.$		δ _{CCl₃F} p.p.m.		
OSF ₃ +4 OSClF ₂ +	$-32 \\ -70$	OPF₃⁵ OPClF₂⁵	$^{+94\cdot 8}_{+48\cdot 6}$	

The laser Raman and i.r. spectra of the solid contain lines that can be assigned to the ions $OSCIF_2^+, AsF_6^-$ by com-

¹ K. O. Christe and W. Sawodny, Inorg. Chem., 1969, 8, 212.

² F. B. Dudley, G. H. Cady, and D. F. Eggers, jun., J. Amer. Chem. Soc., 1956, 78, 1553.
³ M. Azeem, M. Brownstein, and R. J. Gillespie, Canad. J. Chem., 1969, 47, 4159.
⁴ M. Brownstein, P. A. W. Dean, and R. J. Gillespie, Chem. Comm., 1970, 9.
⁵ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 'High Resolution Nuclear Magnetic Resonance Spectroscopy,' vol. 2, Pergamon, Journal Magnetic Resonance Spectroscopy,' vol. 2, Pergamon, Jack London, 1966.

⁶ A. Müller, O. Glemser, and E. Niecke, Z. anorg. Chem., 1966, 347, 275.

⁷ G. M. Begun and A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212.

951

parison with the isoelectronic molecule OPCIF,⁶ and AsF6-.7

The addition of "Cl+" has been effected to the poor donor OSF₂. The reaction of 2ClF,AsF₅ with other poor donors is under active investigation.

We thank Dr. R. J. Gillespie, McMaster University, for the laser Raman spectra of OSCIF₂+AsF₆-, Dr. R. Kaiser, Physics Department, University of New Brunswick, for the ¹⁹F n.m.r. spectrum, and the Defence Research Board of Canada and the Research Corporation for financial support.

(Received, May 3rd, 1971; Com. 696.)