Stereochemistry of $4,5: 10,11$ bis-(tetramethylene)-4,10-cyclotridecadiene-2,6,8,12-tetrayn-1-one

By V. F. Duckworth, P. B. Hitchcock, and R. Mason
(Department of Chemistry, University of Sheffield, S3 7HF)
and (School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ)

Summary Bond lengths in the title compound have been determined by an X-ray analysis; there is no significant cyclic delocalisation in the molecule.

A number of macrocyclic conjugated ketones, the annulenones, have been described by Sondheimer et al. ${ }^{1,2,3}$ The [13]annulenone derivative (1) is non-aromatic as evidenced by its n m.r. spectrum ${ }^{1,3}$ and we now report bond-length data which confirm this interpretation.

(1)
X-Ray diffraction data were obtained with considerable difficulty from ill formed crystals. The average lifetime of a crystal in an X-ray beam is only two days and reflexion intensity data were based therefore almost entirely on visual estimations of a series of Weissenberg photographs ($\mathrm{Cu}-K_{\alpha}$) ; interlayer scaling was achieved via the observation of a number of integrated intensities on a Pailred diffractometer (Mo- K_{α}).

The crystals are monoclinic with $a=12 \cdot 96, b=13 \cdot 36$, $c=8.98 \AA, \beta=93.9^{\circ}$, spacegroup $P 2_{1} / c ; Z=4$. Initial attempts at solution of the structure by direct methods were unsuccessful, owing probably to both the poor quality of the data and the pseudo-special positioning of the molecule with respect to symmetry elements. The orientatation of the molecule was determined by an automatic scan of the three-dimensional Patterson series, using a rotational minimum function based on the intramolecular vectors of the probable annulenone skeleton, and its absolute position was determined by means of a translation function ${ }^{4}$ coupled with minimum residual calculations. Refinement of atomic positions and vibrational parametres by least-squares methods has converged to a present unweighted discrepancy index of 0.16 Further refinement is in progress.

Within experimental error the annulenone skeleton is planar with $C_{2 v}$ symmetry and the conformations of the two cyclohexene rings are such as to give approximate C_{2} symmetry to the molecule as a whole. The molecular electron density (contours every $e \AA^{-3}$, the first contour being $1 \mathrm{e} \AA^{-3}$), bond lengths (\AA) and bond angles are shown in the Figure (average e.s.d. of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds is $0.015 \AA$)

The mean bond length for the formal triple bonds is $1 \cdot 19 \AA$, for the double bonds it is $1.34 \AA$, and for the single bonds between trigonally and digonally hybridised atoms

and between two digonal-hybrid carbon atoms the bond lengths are 1.43 and $1.39 \AA$ respectively. None of these values is significantly different from the appropriate 'accepted' values of $1.20,1.34,1.45$, and $1.42 \AA$ and the carbonyl bond length is also identical, within experimental error, to that for a carbon-oxygen bond of order two. The results confirm that there is no significant cyclic delocalisation in the molecule.

We thank Dr. Pilling and Professor Sondheimer for a sample of the compound.
(Received, May 18th, 1971; Com. 792.)

[^0]
[^0]: ${ }^{1}$ G. M. Pilling and F. Sondheimer, J. Amer. Chem. Soc., 1968, 90, 5610; 1971, 93, 1977.
 ${ }^{2}$ J. Griffiths and F. Sondheimer, J. Amer. Chem. Soc., 1969, 91, 7518; G. W. Brown and F. Sondheimer, ibid., 1969, 91, 760.
 ${ }^{3}$ G. P. Cotterrell, G. H. Mitchell, F. Sondheimer, and G. M. Pilling, J. Amer. Chem. Soc., 1971, 93, 259.
 ${ }^{4}$ A. A. Crowther and D. M. Blow, Acta Cryst., 1967, 23, 544.

