The ¹³C Nuclear Magnetic Resonance Spectra of the Complexes $[LM(CO)_3]$, L = Mesitylene, Durene, or Cycloheptatriene; M = Cr, Mo, W

By B. E. MANN

(The School of Chemistry, The University, Leeds LS2 9JT)

Summary The ¹³C n.m.r. spectra of the complexes [LM- $(CO)_3$], (L = mesitylene, durene, or cycloheptatriene; M = Cr, Mo, W), and ¹J(¹⁸³W-¹³CO) for [(durene) W(CO)₃] are reported and the ¹³C chemical shifts are discussed.

The application of 13 C n.m.r. spectroscopy to organic chemistry has been extensive and has yielded much interesting bonding information.¹ However, there has been a paucity of 13 C n.m.r. investigations of organometallic complexes, and there are no reports of the 13 C n.m.r. spectra of arenes or trienes bonded to metals. Thus the compounds $[LM(CO)_3]$, L = mesitylene, durene, or cycloheptatriene; M = Cr, Mo, W, have been examined and their ¹³C n.m.r. chemical shifts are reported in the Table. For the tungsten

¹³C n.m r. chemical shifts measured at 22.62 MHz in CH₂Cl₂ of mesitylene, durene, and cycloheptatriene and their complexes with $M(CO)_3$, M = Cr, Mo, W. The shifts $(\pm 0.1 p.p.m.)$ are relative to Me₄Si and increasing frequency is taken as being positive.

	Free		[LM(CO) ₃]	
	ligand,			
	Ľ	M = Cr	Mo	W
(i) $L = mesity$	rlene			
13CH.	21.4	21.0	$21 \cdot 2$	20.9
13CH	127.6	92.4	94.7	90.9
¹³ CMe	138.6	111.5	111.7	$111 \cdot 1$
13CO	181·5ª	235.1	223.7	$212 \cdot 6$
(ii) L = duren	.e			
13CH.	19.2	18.6	19-1	18.9
13CH	131.6	99.0	101.4	97.3
13CMe	134.4	107.6	118.8	107.9
13CO	181.5ª	$235 \cdot 5$	$224 \cdot 4$	213.7
(iii) L = cyclo	heptatrien	e		
13CH.	28.7	24.8	28.0	28.7
13CH	121.3	57.6	61.3	52.3
13CH	127.3	99.0	98.1	94.2
13CH	131.3	101.9	103.7	101.7
13CO	181.5ª	232.7	220.6	211.6

a Calculated from R. Ettinger, P. Blume, A. Patterson, jun., and P. C. Lauterbur, J. Chem. Phys., 1960, 33, 1547. Measured as a gas at 8.5 MHz.

complexes, 1/(183W-13C) should be detectable, but on account of the low isotopic abundance of both ¹³C and ¹⁸³W, ${}^{1}J({}^{183}W{}^{-13}C)$ has only been detected for the carbonyls of [(durene) W(CO)₃] where it is 189 ± 2 Hz.

Grant et al. have interpreted the ¹³C n.m.r. shifts in aromatic molecules by consideration of the mobile bond order at each carbon atom.² If it is assumed that changes in this term are dominant in determining the co-ordination shift when an unsaturated organic molecule is co-ordinated to a metal, then the co-ordination shift can readily be calculated from known C-C bond lengths. The C-C bond length in bis-(π -benzene)chromium³ is 1.423 \pm 0.002 Å and in hexamethylbenzenechromium tricarbonyl⁴ is 1.42 Å, *i.e.* the bond length has increased from that of benzene 1.394 Å, to ca. that of graphite,⁵ 1.4210 Å. Thus the co-ordinated arene has a mobile bond order of ca. 0.65 with a predicted co-ordination shift of ca. 26 p.p.m., in good agreement with the observed co-ordination shift. This treatment can be applied equally well to interpret the ¹³C chemical shift of co-ordinated ethylene,⁶ the π -allyl ligand,⁷ co-ordinated dienes,⁸ and the π -cyclopentadienyl ligand.⁹

In the case of the co-ordinated cycloheptatriene, assignment of the signals to individual carbon atoms has not yet proved possible. However, the average co-ordination shift, ca. 40 p.p.m., is considerably greater than that for the arenes, implying stronger metal-triene bonding than metalarene bonding. Consistent with this view is that treatment of $Mo(CO)_6$ with 1-phenylcycloheptatriene does not give an arene complex, but the triene bonds to the metal.¹⁰

It is clear from these studies that ¹³C n.m.r. spectroscopy will help to clarify the nature of the metal-carbon bond, and may provide a useful method to estimate C-C bond lengths in ligands.

I thank Prof. B. L. Shaw for his help and encouragement throughout this work.

(Received, May 24th, 1971; Com. 838.)

¹ E. F. Mooney and P. H. Winson, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 153, and references therein.

² T. D. Alger, D. M. Grant, and E. G. Paul, J. Amer. Chem. Soc., 1966, 88, 5397. ³ A. Haaland, Acta Chem. Scand., 1965, 19, 41.

- ⁴ M. F. Bailey and L. F. Dahl, Inorg. Chem., 1965, 4, 1298.
- ⁵ Chem. Soc. Special Publ. No. 18, 1965.

⁶G. M. Bodner, B. N. Storhoff, D. Doddrell, and L. J. Todd, Chem. Comm., 1970, 1530.

⁷ B. E. Mann, R. Pietropaulo, and B. L. Shaw, Chem. Comm., 1971, 790.

⁸ H. G. Preston and J. C. Davis, J. Amer. Chem. Soc., 1966, 88, 1585; H. L. Retcofsky, E. N. Frankel, and H. S. Gutowsky, ibid.,

p. 2710. ⁹ P. C. Lauterbur and R. B. King, J. Amer. Chem. Soc., 1965, 87, 3266.

¹⁰ E. W. Abel, M. A. Bennett, R. Burton, and G. Wilkinson, J. Chem. Soc., 1958, 4559.