New, Improved Syntheses of Bisbenzeneiron(11) Hexafluorophosphate and Related Compounds

By J. F. Helling,* S. L. Rice, D. M. Braitsch, and T. Mayer

(Departments of Chemistry and Physical Science, University of Florida, Gainesville, Florida 32601)

Summary Bisbenzeneiron(II) hexafluorophosphate is made in excellent yield by the reaction of FeCl₃, AlCl₃, and benzene followed by solvolysis and treatment with aqueous ammonium hexafluorophosphate.

BISARENEIRON(II) salts were first prepared by Fischer and his co-workers^{1,2} and Zeiss and Tsutui described their stability trends.³ We recently reported a greatly improved preparative procedure for such salts based upon the reaction of an arene, FeCl₂, and AlCl₃ in cyclohexane.^{4,5} While the complexation of arenes with FeCl₂ regularly gives 55—75% yields of hexafluorophosphate salts when 2–6 methyl groups are present on each hydrocarbon ring, the yields are much lower for the benzene (3%) and toluene (28%) derivatives.⁶ Presumably the reduced yields reflect the reduced π electron donor ability of rings with fewer substituents and the reduced hydrolytic stability of the products. Fischer and Böttcher failed to isolate a bisbenzeneiron(II) salt and Zeiss and Tsutsui's mention of the ion is unsupported by preparative details, physical constants, or analytical data.

We now report a new synthetic route to bisareneiron(II) salts based on a long-known reaction, the chlorination of arenes by FeCl₃.⁷ In such reactions FeCl₂ is a by-product. Presumably, it is in a much more highly activated state than FeCl₂ prepared externally and complexes rapidly and selectively with the excess of the arene used as solvent. In the case of benzene reactions (1)—(3) occur.

$$C_6H_6 + FeCl_3 \rightarrow C_6H_5Cl + FeCl_2 + HCl$$
(1)

- ² E. O. Fischer and R. Röhrscheid, Z. Naturforsch., 1962, 17b, 483.
- ⁸ M. Tsutsui and H. Zeiss, Naturwiss., 1957, 44, 420.
- ⁴ J. F. Helling and D. M. Braitsch, J. Amer. Chem. Soc., 1970, 92, 7207.
- ⁵ J. F. Helling and D. M. Braitsch, J. Amer. Chem. Soc., 1970, 92, 7209.
- ⁶ J. F. Helling and S. L. Rice, unpublished data.
- ⁷ E.g. P. Kovacic and N. O. Brace, J. Amer. Chem. Soc., 1954, 76, 5491.

 $2C_6H_6 + FeCl_2 + 2AlCl_3 \rightarrow [(C_6H_6)_2Fe](AlCl_4)_2 \qquad (2)$

$$[(C_6H_6)_2Fe](AlCl_4)_2 \xrightarrow{H_2O, NH_4PF_6} [(C_6H_6)_2Fe](PF_6)_2 \quad (3)$$

Iron(III) chloride and aluminium chloride are refluxed overnight in an excess of benzene. After cooling to -50° , the mixture is solvolysed by addition of cold aqueous methanol. The orange aqueous layer is then treated with aqueous NH_4PF_6 to give bisbenzeneiron(II) hexafluorophosphate, m.p. 145—152° (decomp.) as a pale orange solid in yields as high as 79%.

The highest mass peak in the mass spectrum was that of benzene (m/e~78) indicating the absence of co-ordinated chlorobenzene. This was supported by a negative Lassaigne test for chlorine. The n.m.r. spectrum (CH₃CN; Varian A60) showed a sharp singlet at τ 3.00. The i.r. spectrum (KBr) showed absorptions at 3116s, 1627m, and 1456s cm⁻¹.

Similarly a 65% yield of the toluene analogue was obtained. The yield of bismesityleneiron(II) hexafluorophosphate was raised from 65% in the case of the FeCl₂ reaction to 86% by use of FeCl₃.

We acknowledge a National Science Foundation undergraduate summer research assistantship (to T.M.) and an N.D.E.A. Title IV fellowship (to D.M.B.)

(Received, April 2nd, 1971; Com. 485.)