1025

Observation of Nitrogen Hyperfine Splitting in the Electron Spin Resonance Spectra of 1:1 Copper(11) β-Diketonate Adducts with Nitrogen Donors

By B. B. WAYLAND* and M. D. WISNIEWSKI

(E. F. Smith Laboratory of Chemistry, and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

Summary The e.s.r. spectra for 1:1 nitrogen donor adducts of Cu^{II} bisacetylacetonate and Cu^{II} bishexafluoroacetylacetonate are reported: the 1:1 adducts of Cu(hfacac)₂ with pyridine and quinuclidine are unique in exhibiting ¹⁴N hyperfine splitting in the e.s.r. spectrum.

NEUTRAL four-co-ordinate Cu^{II} chelates such as Cu^{II} bisacetylacetonate, $[Cu(acac)_2]$, function as acceptors and form five-co-ordinate complexes (1:1 adducts) with donors such as pyridine. X-Ray structure determinations of Cu(acac)₂:quinoline¹ and Cu(N-phenyl salicylaldimine)₂·pyridine² have shown that these complexes have the square-pyramidal type framework with the neutral donor (e.g. pyridine) occupying the axial position (Figure 1A). We report that the e.s.r. spectra for the 1:1 adducts of Cu^{II} bishexafluoroacetylacetonate, [Cu(hfacac)₂], with pyridine and quinuclidine (C₇H₁₃N) exhibit ¹⁴N hyperfine splitting, which is incompatible with axial ligation (Figure 1A), but is consistent with several structure types (Figure 1B and C) which are unusual for this class of five-co-ordinate complexes.

E.s r. studies of copper(II) β -diketonates and the 1:1 five-co-ordinate adducts with donors have invariably resulted in $g_{xy} > g_x \sim g_y$ which has been used to place the single odd electron in the d_{xy} molecular orbital.^{3,4} In the case of axial ligation, the σ and π orbitals of the axial donor are orthogonal to the Cu^{II} d_{xy} orbital in the idealized C_{2v} adduct

structure (Figure 1A). The odd electron will thus have only a small probability of penetrating to the nitrogen nucleus of the donor, and ¹⁴N hyperfine splitting is not expected to be observable in the e.s.r. spectra for this class of complexes.

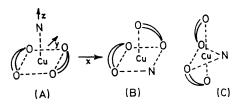


FIGURE 1. Schematic representations of structure types for 1:1 Cu(chelate)₂:nitrogen donor adducts.

The e.s.r. spectrum of the 1:1 pyridine adduct of $[Cu(acac)_2]$ in frozen dichloromethane shows no resolvable ¹⁴N hyperfine splitting (Figure 2A) (Table). Nitrogen-14 n.m.r. contact-shift studies for the pyridine adduct of $Cu(acac)_2$ in neat pyridine were carried out as a check on the e.s.r. results. The resulting isotropic ¹⁴N coupling constant of $+0.70 \pm 0.10$ G is too small to be resolved in the e.s.r. spectrum. Small pyridine proton contact shifts are also consistent with these observations.⁵

The e.s.r. spectrum for the g_z region of Cu(hfacac)₂pyridine in Nujol glass at 90 K is given in Figure 2B. Hyperfine structure is most apparent on the $M_1 = -\frac{3}{2}$ transition. Nitrogen hyperfine structure is clearly resolved in the CH₂Cl₂ frozen solution (Figure 2C) (Table). The splitting of each of the four 63 Cu resonances in the g_z region

TABLE

E.s.r. parameters for the g_* transitions of Cu^{II} β -diketonates and 1:1 nitrogen donor adducts in frozen solution media at 90K^{a,b}

Complex			Solvent	g z	A _z (⁶³ Cu) ^e (Gauss)	A (¹⁴ N) (Gauss)
Cu(acac),	• •	••	CH ₂ Cl ₂	$2 \cdot 261$	181	
Cu(acac) ₂ ·pyridine	••		CH_2Cl_2	$2 \cdot 291$	146	
$Cu(hfacac)_2$	••	••	Nujol	2.270	175	
· · ·			CH ₂ Cl ₂	2.263	171	
Cu(hfacac) ₂ ·pyridine	• •	••	Nujol	2.302	145	9 ± 2
			CH ₂ Cl ₂	2.303	142	8.6 ± 0.5
Cu(hfacac) ₂ ·quinuclidine		••	Nujol	2.295	146	ca. 8
			CH_2Cl_2	2.302	145	7.7 ± 0.5

^a Second-order effects are found to be negligible in the g_z regions and the reported parameters are the result of a first-order analysis of the spectra.

 $b g_z > g_x \sim g_y \sim 2.05 - 2.06$ is observed for every complex reported. Large second-order effects, quadrupole effects, forbidden bands, 63,65 Cu and 14 N coupling complicate the analysis of the g_x, g_y region. Complete spectral simulation is in progress. ^{c 65}Cu hyperfine is resolved in all cases and is observed to be close to the theoretical value A^{65} Cu/ A^{63} Cu = 1.07.

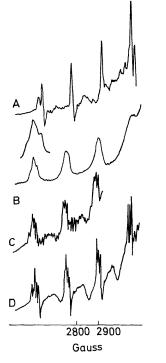


FIGURE 2. E.s.r. spectra (v = 9140 MHz) for the g_z region in frozen solutions of (A) Cu(acac)₂ pyridine in CH₂Cl₂; (B) Cu(hfacac)₂ pyridine in Nujol; (C) Cu(hfacac)₂ pyridine in CH₂Cl₂; (D) Cu(hfacac)₂.quinuclidine in CH₂Cl₂.

into three equal intensity components is ascribed to the coupling of the single ${}^{14}N(I = 1)$ nucleus in the 1:1 adduct. The 1:1 quinuclidine adduct of Cu(hfacac)₂ is also found to exhibit three equal-intensity ¹⁴N hyperfine components on each of the 63 Cu components in the g_z region (Figure 2D).

The e.s.r. g values $(g_z > g_x \sim g_y)$ for these mono-adducts are consistent with the odd electron occupying the d_{xy} The presence of nitrogen hyperfine molecular orbital. indicates that the nitrogen donor orbitals make a large contribution to the odd electron m.o. in these adducts, and thus identifies the d_{xy} as an important acceptor level of Cu^{II} in binding the neutral nitrogen donor.

Muetterties and Schunn have listed the possible structure types for five-co-ordinate species of the form $[MX_4Y]$.⁶ The two structural types that could be compatible with the e.s.r. results are shown in Figure 1B and C. A square pyramid with the neutral donor occupying a basal position is one possibility (Figure 1B) and a trigonal bipyramid with nitrogen donor in an equatorial position and elongated axial bonds is a second possibility (Figure 1C). At present we favour the basally ligated square-pyramid type (Figure 1B), for trigonal-bipyramidal complexes such as $[Cu(dipyridyl)_2I]^+$ have dz^2 ground states.^{7,8} The basally ligated square pyramid has precedent in the structure reported for the fiveco-ordinate 1:1 adduct of bis-(a-nitroacetophenato)copper-(II) with 2-methylpyridine.⁹

We acknowledge the support of the research by the Advanced Research Projects Agency through a contract, and the National Science Foundation through a grant.

(Received, May 21st, 1971; Com. 820.)

- ¹ P. Jose, S. Ooi, and Q. Fernando, *J. Inorg. Nuclear Chem.*, 1969, **31**, 1971. ² D. Hall, S. V. Sheat, and T. N. Waters, *Chem. and Ind.*, 1965, 1428.
- ⁵ A. H. Maki and B. R. McGarvey, J. Chem. Phys., 1958, 29, 31; H. A. Kuska and M. T. Rogers, *ibid.*, 1965, 43, 1744.
 ⁴ A. F. Garito and B. B. Wayland, J. Amer. Chem. Soc., 1969, 91, 866.
 ⁵ C. H. Ke, R. J. Kurland, C. I. Lin, and N. C. Li, J. Phys. Chem., 1970, 74, 1728.
 ⁶ E. L. Muetterties and R. A. Schunn, Quart. Rev., 1966, 20, 245.
 ⁷ B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143.
 ⁸ B. L. Hathaway, D. E. Billing, L. Dendley, B. L. Fordey, and A. M. C. Tomlingen, J. Chem. Soc. (4), 1070, 806.

- ⁸ B. J. Hathaway, D. E. Billing, R. J. Dudley, R. J. Fereday, and A. A. G. Tomlinson, J. Chem. Soc. (A), 1970, 806.
- ⁹ M. Bonamico and G. Dessy, Chem. Comm., 1970, 1218.