Formation of an S-Methyl Derivative from the Reaction of Methanol with Compounds of the Type S:PX₂·N:PF₂Cl¹

By H. W. ROESKY* and L. F. GRIMM

(Anorganisch-Chemisches Institut der Universität Göttingen, Germany)

Summary The compounds $S: PX_2 \cdot N: PF_2Cl$ (X = F or Cl) react with methanol to form the S-methyl derivatives MeS·PX₂: N·PF₂: O.

THE novel compounds $S: PX_2 \cdot N: PF_2Cl$ (X = F or Cl) have recently been prepared from the reaction of the amides $S: PX_2 \cdot NH_2$ with an excess of PF_3Cl_2 .² In order to establish the chemical properties of these compounds we investigated the reaction with methanol. Hydrogen chloride was the

$$S: PF_2 \cdot N: PF_2Cl + MeOH \rightarrow S: PF_2 \cdot N: PF_2OMe,$$

(I)

only volatile product formed; therefore the first step of the reaction occurred at the chlorine atom of the $-N: PF_2Cl$ group. This reaction produced only one of the three possible isomers (I)—(III). The ¹H n.m.r. spectrum showed a doublet of triplets which was derived from coupling with one ³¹P and two ¹⁹F atoms; this excludes structure (II) where coupling with both phosphorus atoms would be expected. Compound (II) was prepared according to the following equation:³

$$\begin{split} \text{S:PF}_2 \cdot \text{N}(\text{Me}) \cdot \text{SnMe}_3 + (F_2\text{PO})_2\text{O} \rightarrow \\ \text{S:PF}_2 \cdot \text{N}(\text{Me}) \cdot \text{PF}_2 : \text{O} + \text{MeSn} \cdot \text{O} \cdot \text{PF}_2 : \text{O} \\ (\text{II}) \end{split}$$

¹ For earlier work see U.S.P. 3,533,736, 1970.

² H. W. Roesky and L. F. Grimm, Chem. Ber., 1969 102, 2319.

³ H. W. Roesky and H. Wiezer, Chem. Ber., in the press.

It is a distillable liquid and shows no tendency to rearrange.

I.r. and ³¹P n.m.r. spectra show unambiguously that the product is compound (III). The i.r. spectrum shows two strong absorptions at 1380 and 1305 cm⁻¹ which are in the regions expected for v(P=N) and v(P=O) respectively. MeS•PFC1: N•PF₂: O and MeS•PCl₂: N•PF₂: O show v(P=N) shifted *ca*. 20 cm⁻¹ to lower frequency owing to replacement of fluorine by chlorine, and v(P=O) at 1300 cm⁻¹. The ³¹P n.m.r. spectrum has a 6-line signal for $-PF_2$: O [I(P-F)]

S: $PF_2 \cdot N(Me) \cdot PF_2$: O, or $MeS \cdot PF_2$: N · PF_2 : O + HCl (II) (III)

960 Hz, J(P-P) 106.6 Hz] and a 24-line signal for MeS-PF₂= [J(P-F) 1133 Hz, J(P-H) 20 Hz]. We suggest that structure (III) is favoured by the high tendency for the formation of the phosphorus-oxygen double bond.

(Received, March 12th, 1971; Com. 221.)