Silver(I) Ion Catalysis of Benzyne Cycloadditions

By **LEO A.** PAQUETTE

(Department of Chemistry, The Ohio State Univevsity, Cohmbus, Ohio **43210)**

Summary The marked alterations in product distributions in benzyne cycloadditions catalysed by Ag+ are shown to be consistent with a generalized electrophilic scheme which is formally the reverse of that in the oxidative addition of Ag⁺ to strained σ bonds.

IN its ground state, now generally viewed as a symmetric singlet,^{1,2} benzyne (1) is well known to be capable of concerted $(4+2)$ cycloadditions.^{2,3} When **(1)** is generated in the presence of silver(1) ions, however, significant alterations in product distributions are encountered.^{4,5} The pronounced effect of Ag+ in these reactions has been rationalized on the basis of a benzyne-silver complex **(2)** which possesses greater electrophilic character than 'free' benzyne. Although we concur with the proposed nature of this reactive intermediate, we here suggest an alternative to Warner's recent postulate⁶ on the subsequent fate of this species. Since he was of the opinion that σ -bound Ag could not account for the 'anomalous' reactions, Warner suggested charge-transfer complexation of the substrate with **Ag+2.** However, the very high potential associated with the oxidation of Ag⁺ to Ag⁺² ($+$ **1.98 V**⁷) will almost certainly discourage such a mechanism, and we believe that the extra-

ordinary ability of Ag+ to modify the reactivity of benzyne is most reasonably attributed to the presence of precisely those Ag atoms which are initially σ -bonded in (2) and not to extraneous AgI ions.

The cycloaddition of (2) to benzene⁴ is an example. Normal electrophilic attack on the aromatic nucleus leads to **(3)** which, because of its pentadienyl cationic character, is restricted from undergoing disrotatory closure to (4) .⁸ As a result, the silver atom first becomes partially bonded to the benzene ring and to $C(2)$ or $C(6)$ [cf. (5)]. The high electron deficiency at the terminal pentadienyl cation centres⁹ (which maximizes the developing cationic character of the metal) and the formation of a cyclic five-membered transition state or intermediate makes this pathway favourable. Ultimate loss of **Ag*** from *(5)* with concomitant σ C-C bond formation affords (6) which serves as precursor

to benzocyclo-octatetraene **(7).** The conversion of *(5)* into *(6)* is the formal reverse of the mechanism advanced for the oxidative addition of Ag⁺ to strained σ bonds.^{10,11}

The behaviour of (2) toward cyclo-octatetraene⁵ is an interesting contrast. In this instance, homotropylium cation *(8)* is likely to be generated, However, in *(8)* the greater portion of the π -electron density lies beneath the ring and the **Ag** atom can interact only poorly with the requisite π orbitals. To accommodate the driving force for ejection of Ag+, **(8)** undergoes symmetry-allowed disrotatory cyclization8 to **(9).** Preferential bonding of silver to a terminal carbon atom (the upper orbital of which is now accessible to the metal) leads *via* **(10)** to benzisobullvalene **(11).** Alternatively, the displacement of Ag+ from both **(3)** and **(9)** may result from normal electrophilic aromatic substitution processes.

The presumed intermediate **(12)12** behaves differently towards Ag+. Although electrophilic addition of **Ag+** to **C(6)** can lead to symmetrical dibenzohomotropylium ion **(13),** the fusion **of** the two benzene rings must cause ejection of Ag+ ultimately *via* **(14)** and **(15).** Additionally, it appears that **C(2)** is the most electron-deficient centre in **(14)** ; that being the case, partial bonding of Ag to that carbon atom should also be preferred for electronic reasons. Also, sixmembered rings are generated transiently in both **(10)** and

We are currently studying these reactions further in our **(15)** * investigations of the catalytic properties of silver.1°

(Received, June 14th, 1971 ; *Corn.* 974.)

¹ R. Hoffmann, A. Imamura, and W. J. Hehre, *J. Amer. Chem. Soc.*, 1968, 90, 1499.
² M. Jones, jun. and R. H. Levin, *J. Amer. Chem. Soc.*, 1969, 91, 6411, and pertinent references therein.

⁸ R. W. Hoffmann, ''Dehydrobenzene and Cycloalkynes,'' Academic Press, New York, 1967, p. 208 ff.
⁴ (a) L. Friedman, *J. Amer. Chem. Soc.*, 1967, 89, 3071; (b) L. Friedman and D. F. Lindow, *ibid.*, 1968, 90, 2329; (c) M. Stiles, *ibid.,* 1963, *85,* 1798.

5 E. Vedejs and R. **A.** Shepherd, *Tetrahedron Letters,* 1970, 1863.

6 P. Warner, *Tetrahedron Letters*, 1971, 723.
7 F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry, A Comprehensive Text," 2nd Edition, Interscience, New York, 1966, p. 1039.

* **R.** B. Woodward and R. Hoffmann, "The Conservation **of** Orbital Symmetry," Verlag Chemie GmbH and Academic Press, 1970, **p. 45.**

P. Warner and S. Winstein, *J. Amer. Chem. Soc.*, 1971, 93, 1284.
¹⁰ (a) L. A. Paquette and S. E. Wilson, *J. Amer. Chem. Soc.*, submitted for publication; (b) L. A. Paquette, R. P. Henzel, and S. E. Wilson, *ibid.*, 1971, 93, 2335 and earlier papers in this series.
¹¹ J. Halpern, *Accounts. Chem. Res.*, 1970, 3, 386.

¹²W. Merk and **R.** Pettit, *J. Amer. Chem. SOC.,* 1967, **89,** 4787.