Conversion of Thioamides and N^2 -Acyl- N^1 -methyl- N^1 -thioacylhydrazines into Amides and N^1N^2 -Diacyl- N^1 -methylhydrazines by Trimethyloxonium Fluoroborate

By R. Mukherjee

(Department of Chemistry, University of Illinois at Chicago Circle, Chicago, Illinois 60680)

Summary Thioamides and N^2 -acyl- N^1 -methyl- N^1 -thioacylhydrazines, with or without benzylic protons α to both the thiocarbonyl and carbonyl carbons, have been converted into the corresponding amides and N^1N^2 -diacyl- N^1 -methylhydrazines in high yield by treating with trimethyloxonium fluoroborate.

There has been no report of the use of trialkyloxonium fluoroborate¹ for converting thioamides into amides in spite of the extensive application²⁻⁵ of this reagent in organic synthesis.

We have found that NN-disubstituted thioamides, either with or without benzylic protons α to the thiocarbonyl carbon, undergo conversion into the corresponding amides on treatment with Meerwein's reagent.2 Thus, NN-di-isopropyl thioacetamide† (la; $R^1 = Me$, $R^2 = R^3 =$ CHMe₂), m.p. 84°, on treatment with trimethyloxonium fluoroborate overnight at room temperature in dry benzene followed by decomposition with 50% aqueous sodium carbonate gives NN-di-isopropylacetamide (2a; 65%, b.p. $58^{\circ}/0.3$ mm). Similarly, NN-dimethylthiobenzamide (1b; $R^1 = Ph$, $R^2 = R^3 = Me$), m. p. 38° (lit^{6a} m.p. 39°), NNdiethylthiobenzamide (1c; $R^1 = Ph$, $R^2 = R^3 = Et$), m.p. 41° (lit.6b m.p. 41°), NN-di-isopropylthiobenzamide (ld; $R^{1} = Ph$, $R^{2} = R^{3} = CHMe_{2}$), m.p. 100°, and NN-diisobutylthiobenzamide (1e; R1 = Ph, R2 = R3 = CH2·CH-Me₂), m.p. 77°, give the corresponding amides [(2b, 65%, b.p. $160^{\circ}/3 \text{ mm}$), (2c, 60%, b.p. $155^{\circ}/3.5 \text{ mm}$), (2d, 95%, m.p. 70°; lit.8 69—71°), and (2e, 60%, m.p. 61°)].

Thioamides with benzylic protons α to the thiocarbonyl carbon, such as NN-dimethylphenylthioacetamide (1f; R^1 = PhCH₂, R^2 = R^3 = Me), m.p. 79° (lit⁶c 79—80°), NN-diethylphenylthioacetamide (1h; R^1 = PhCH₂, R^2 = R^3 = Et), m.p. 56—57°; (lit.⁶d m.p. 56—57°), NN-di-isopropylphenylthioacetamide (1h; R^1 = PhCH₂, R^2 = R^3 = CH-Me₂), m.p. 104°, and NN-di-isobutylphenylthioacetamide

(li; $R^1 = PhCH_2$, $R^2 = R^3 = CH_2 \cdot CHMe_2$), m.p. 43°, upon treatment with trimethyloxonium fluoroborate under the same conditions as before yielded the corresponding amides

$$R^{1} \cdot C(S) \cdot N(R^{2})R^{3} \xrightarrow{Me_{3}OBF_{4}} R^{1} \cdot C(S Me) = N(R^{2})R^{3}$$
(1) $\downarrow OH^{-} BF_{4}^{-}$
 $R^{1} \cdot C(O) \cdot N(R^{2})R^{3} \longrightarrow R^{1} \cdot C(S Me) OH \cdot N(R^{2})R^{3}$
(2) $+ MeSH$

$$\alpha'; R^1 = Ph, R^2 = CH_2 Ph$$
 $b; R^1 = R^2 = CH_2 Ph$
 $d; R^1 = R^2 = CH_2 Ph$
 $d; R^1 = CH_2 Ph, R^2 = Ph$

[(2f, 70%, b.p. $95^{\circ}/0.3$ mm), (2g, 70%, b.p. $120-122^{\circ}/0.3$ mm), (2h, 92%, m.p. 51°) and (2i, 70%, b.p. $143^{\circ}/0.3$ mm)]. Both phenylthioacetylpiperidide (3; X = S), m.p. 80° (lit.⁹

[†] Satisfactory elemental analyses were obtained for all new compounds reported.

m.p. $79-80^{\circ}$), and phenylthioacetylpyrrolidide (4; X = S), m.p. 69°, could also be converted into the amides [(3; X = O, b.p. $122-125^{\circ}/0.3$ mm; lit. $138-139^{\circ}/0.4$ mm, 103 $200-203^{\circ}/12 \text{ mm}^{10b}$) and (4; X = 0, m.p. 48°)] in 84% yield.

Extension of this procedure with N^1 -methyl- N^2 -phenylacetyl- N^1 -thiobenzoylhydrazine (5a; M^+ 284, m.p. 178°), N^2 -benzoyl- N^1 -methyl- N^1 -thiobenzoylhydrazine (5b; M^+ 270, m.p. 167°), N¹-methyl-N²-phenylacetyl-N¹-phenylthioacetylhydrazine (5c; M^+ 298, m.p. 107°), and N^2 -benzoyl- N^1 -methyl- N^1 -phenylthioacetylhydrazine (5d; M^+ 284, m.p. 116°) was equally successful and the N^1N^2 -diacyl- N^1 - methylhydrazines [(6a, 70%, M^+ 268, m.p. 115°); (6b, 80%, M^+ 254, m.p. 145°); (6c, 75%, M^+ 282, m.p. 91°), and (6d, 70%, M^+ 268, m.p. 88°)] were obtained in satisfactory yields.

The mechanism of formation of the amides and the N^1N^2 -diacyl- N^1 -methylhydrazines under the above conditions can easily be explained, as shown in the diagram.

I thank Dr. B. C. Das, Institut de Chimie des Substances Naturelles, 91-Gif-sur-Yvette, France, for recording the mass spectra of the compounds reported.

(Received, April 23rd, 1971; Com. 625.)

- ¹ H. Meerwein, W. Florian, N. Schön, and J. Stopp, Annalen, 1961, 641, 1.
- ² Org. Synth., 1966, 46, 113, 120.
- ³ L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis', Vol. 1, Wiley, New York, 1967, pp. 1210—1212; and references cited therein.
- ⁴ K. T. Potts, E. Houghton, and H. Husain, Chem. Comm., 1970, 1025; K. T. Potts and H. Husain, J. Org. Chem., 1970, 35, 3451.
- J. C. Sheehan and M. M. Nafissi-V, J. Org. Chem., 1970, 35, 4246.
 K. Kindler, Annalen, (a), 1923, 431, 209; (b) 1923, 431, 224; (c) 1923, 431, 210; (d), 1923, 431, 225.
- K. C. Ramey, D. J. Louick, P. W. Whitehurst, W. B. Wise, R. Mukherjee, and R. M. Moriarty, Org. Magnetic Resonance, 1971, 3,
 - ⁸ N. A. Leistner and D. S. Tarbell, J. Org. Chem., 1958, 23, 1152.

 - K. A. Jensen and C. Pedersen, Acta Chem. Scand., 1961, 15, 1087.
 (a) H. Staudinger and F. Müller, Ber., 1923, 56, 712; (b) K. Kindler, Arch. Pharm., 1927, 265, 389.