
Novel Steroidal Aromatization Reactions

By J. R. HANSON

(The School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9Q])

REARRANGEMENTS leading to aromatization require the juxtaposition of two double-bond equivalents and a carbonium ion source. The cationic spiro-diene intermediate

other hand the formation of a C-5 carbonium ion implicit in such reactions, can also lead to products typical of Westphalen and backbone rearrangements.

 2α , 3α -Epoxy- 5α -hydroxyandrostan-17-one (I; R = H₂)² satisfies the first proposition and yet contains a 5α -hydroxygroup. On treatment with HBr in glacial acetic acid, it gave 4-methyloestra-1,3,5(10)-trien-17-one (II)³ as the major isolable product. Under the same conditions, 17β acetoxy- 4α , 5α -epoxy- 3β -hydroxyandrostane gave the corresponding aromatic 17β -acetate again as the major product. Similarly 4-methyloestra-1,3,5(10)-trien-17-one (II) was obtained from reaction of 5α , 6α -epoxyandrost-2-en-17-one. On the other hand treatment of 2α , 3α -epoxy- 5α -hydroxyand rost an e-6,17-dione (I; R = O) and its 17β -acetoxycompound with HBr and glacial acetic acid gave 1-methyloestra-1,3,5(10)-triene-6,17-dione (III) and the 17β -acetoxycompound and not the 4-methyl-steroid. Authentic samples of both 1-methyloestra-1,3,5(10)-triene-6,17-dione and 4-methyloestra-1,3,5(10)-triene-6,17-dione were prepared by the chromium trioxide oxidation of 1-methyl- and 4-methyl-oestra-1,3,5(10)-trien-17-one. Similar aromatic compounds have also been obtained on treatment of Δ^2 -4bromo- 5α -hydroxy-steroids with HBr in glacial acetic acid.

I therefore conclude that the dienol-benzene rearrangement is one example of a wider class of reaction, some other examples of which are presented above. Furthermore the presence of a 6-carbonyl function serves, as in the dienone-phenol rearrangement, to destabilize a C-5 carbonium ion and prevents the formation of spirocyclic intermediates. This leads to aromatization *via* the alternative pathway of a C-10 \rightarrow C-1 methyl migration.

which is characteristic of the dienol-benzene rearrangement of steroids,¹ may be derived in theory from a range of compounds, for example ring-A hydroxy-epoxides. On the

(Received, July 12th, 1971: Com. 1194.)

- ² The preparation of the hydroxy-epoxides followed standard procedures which will be described in the full paper.
- ³ J. R. Hanson and T. D. Organ, J. Chem. Soc. (C), 1970, 513.

¹ See D. N. Kirk and M. P. Hartshorn, "Steroid Reaction Mechanisms," Elsevier, London, 1968.