
Reversible Binding of Carbon Monoxide by the (Dimethylmethyleneammonium)copper(1) Chloride Cation

By R. MASON* and G. RUCCI

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Reactions of the dimethylmethyleneammonium cation with CuCl and Cu(CO)Cl are described; the carbon monoxide ligand in $[Cu(CO)Cl(Me_2N=CH_2)]^+$ is reversibly co-ordinated over the temperature range -40° to -15° .

The dimethylmethyleneammonium cation, the synthesis of which has been described by Eschenmoser,¹ is potentially a useful ligand for the stabilisation of low-valent metal complexes. We report that complexes of this ligand with CuI, having stabilities comparable with related complexes,²

have been characterised and are summarised in the Scheme. Carbon monoxide is liberated when Cu(CO)Cl and $(Me_2NCH)_2^+Br^-$ react in anhydrous tetrahydrofuran (THF), the resulting solid being $(Cu_2Cl_2Br)^-(Me_2N=CH_2)^+$ (I) [analysis and X-ray molecular weight]. This formulation was also suggested by the i.r. spectrum which shows $\nu(C=N)$ as 1690 cm⁻¹ in (I) compared with a value of 1680 cm⁻¹ in $(Me_2N=CH_2)^+Br^-$.

Compound (I) suspended in THF at -40° , absorbs carbon monoxide quantitatively (lCu: lCO) and a pale yellow solid, sparingly soluble in THF, is obtained which is stable up to -15° only. The i.r. spectrum (-60° , THF mull) has $\nu(C=O)$ 2080 cm⁻¹ and two intense $\nu(C=N)$ bands centred at 1640 and 1610 cm⁻¹, consistent with the formulation (III) if $\nu(C=N)$ is 'split' by solid state effects. A suspension of (III) in THF releases CO quantitatively with pseudo-first-order kinetic dependence at -15° , (II) being formed, which at room temperatures reverts to (I).

In the presence of Cu(CO)Cl, (II) evolves an equimolar amount of CO at temperatures above -15° and it seems that a polynuclear complex (IV) is formed between (II) and Cu(CO)Cl. This complex dissociates quantitatively at 0° to give (I). By contrast, Cu(CO)Cl is stable in THF at room temperature.

We have discovered reactions of (I) with nitric oxide which appear to parallel those described here; further work is in progress.

We thank Montecatini-Edison for leave of absence (G.R.).

(Received, July 5th, 1971; Com. 1143.)

¹ A. Eschenmoser, Symposium on Stereochemistry, Sheffield, 1970.

² F. A. Cotton and T. J. Marks, J. Amer. Chem. Soc., 1970, 92, 5114; G. Rucci, C. Zanzottera, M. P. Lachi, and M. Camia, Chem. Comm., 1971, 652 and refs. therein.