
Studies on the Transformation of Unnatural Steroids by Micro-organisms. 14β-Hydroxylation of Androstane Derivative

By Fumikazu Mukawa

(Shionogi Research Laboratory, Shionogi and Company Ltd, Fukushima-ku, Osaka, Japan)

Summary Incubation of 5β , 14β -androstane-3, 17-dione with Cercospora melonis [Corynespora melonis (CKe) Lindau] afforded $3\alpha 14\beta$ -dihydroxyandrostan-17-one, 3-hydroxy- 3α , 9α -oxido- 5β -androstan-17-one, 3α , 5β -dihydroxyandrostan-17-one, and 3α -hydroxy- 5β ,14 β -androstan-17-one The vast literature on the microbiological hydroxylation of steroids refers almost entirely to substrates having a natural configuration.¹ We have undertaken an investigation of the

hydroxylation of 5β , 14β -androstane-3, 17-dione (C-D rings cis-fused) by Cercospora melonis, and the relevance of our results to the Oxford group's consideration² that the position of the keto-group may be the main factor determining the site of attack, prompts this preliminary account of our studies.

In our experiments, 5β , 14β -androstane-3, 17-dione (3) was prepared by irradiation (low-pressure Hg lamp, emitting mainly at 253.7 nm) of 3β , 17 β -diacetoxy-5 β -androstane (1; R = Ac) with mercuric bromide in cyclohexane,³ followed by hydrolysis in alkaline methanolic solution to give 5β , 14β androstane-3 β , 17 ξ -diol (2; R = H), m.p. 205-207°, $[\alpha]_{D}^{20} + 85.8^{\circ}$ (chloroform), ¹H n.m.r. τ : 8.98 (18-H₃), 9.06 (19- H_3), which was then oxidized with Jones' reagent to (3), m.p. 170–171°, $[\alpha]_D^{22} + 109^\circ$, ¹H n.m.r. τ : 8.91 $(18-H_3)$, 8.98 $(19H_3)$. Transformation of (3) by Cercospora melonis under Kondo's conditions⁴ produced 14β-hydroxycompounds (4) and (5) (22.5% yields) plus other hydroxyderivatives (6), (7), and (9). All the products are new compounds.†

A combination of chemical transformations and spectroscopic examination established the positions and configurations of the hydroxy-groups. The assignments; of the C-18 (Δ C-19) methyl group signals in the ¹H n.m.r. spectra of the 14 β -hydroxy-compound, 3α -acetoxy-14 β hydroxy-5 β -androstan-17-one (10), m.p. 224—226°, $[\alpha]_{D}^{24}$ $+22\cdot4^{\circ}$ (chloroform), and the corresponding 14 α -hydroxycompound (11)⁴ were readily confirmed by use of Eu(dpm)₃induced shifts.5

(Received, June 7th, 1971; Com. 929.)

† All products gave satisfactory analytical data.

‡ We thank Miss Y. Yoshimura of this laboratory for ¹H n.m.r. spectra data.

"'Microbial Transformation of Steroids," W. Charney and H. L. Herzog, Academic Press, New York, 1967, pp. 18-36,

- ² J. E. Bridgeman, J. W. Browne, P. C. Cherry, (Miss) M. G. Combe, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, Y. Morisawa, and P. D. Woodgate, *Chem. Comm.*, 1969, 463; A. B. Turner, *Ann. Reports* (B), 1969, 66, 389.
 ^a M. Gorodetsky and Y. Mazur, *J. Amer. Chem. Soc.*, 1968, 90, 6540.
- ⁴ E. Kondo and T. Mitsugi, Tetrahedron, 1967, 23, 2153.
- ⁵ Cf. P. V. Demarco, T. K. Elzey, R. Burton, and E. Wenkert, J. Amer. Chem. Soc., 1970, 92, 5737.