Nucleophilicity of Halide Ions in Molten Quaternary Ammonium Salts

By JOHN E. GORDON* and POTHEN VARUGHESE

(Department of Chemistry, Kent State University, Kent, Ohio 44242)

Summary The relative rates of nucleophilic displacement by halide ions from tetra-n-pentylammonium cations in the molten tetrapentylammonium salts at 180° (Cl⁻: Br⁻: $I^- = 620:7.7:1$) reflect the enhanced nucleophilicity expected for unsolvated, unassociated halide ions.

IN molten quaternary ammonium salt media, where deactivation by ion solvation and ion association¹ are absent,² halide ions should show a nucleophilic reactivity in the order: $F^- > CI^- > Br^- > I^-$. This proposition has not been rigorously tested. The reverse Menschutkin reaction (1) is qualitatively more rapid for X = Br than for X = I in studies in sealed ampoules,³ but the reaction is accompanied by formation of olefin [equation (2)]. It is

$$(n-C_5H_{11})_4N^+X^- \longrightarrow (n-C_5H_{11})_3N + n-C_5H_{11}-X$$
(1)

$$(n-C_5H_{11})_4N+X^-$$
 (2a)

$$\overset{\bullet}{\text{Me-[CH_2]_2-CH}=CH_2+(n-C_5H_{11})_3\text{NH}+X^-} \\ & \uparrow \\ (n-C_5H_{11})_3\text{N}+n-C_5H_{11}-X$$
(2b)

known that at least part of this olefin is produced via equation (2b) under these conditions,³ but a direct E2 process with X⁻ as base [equation (2a)] has not been ruled out. Pyrolysis of some alkaloid methohalides under the

high-vacuum conditions obtaining in the ionization chamber of a mass spectrometer gives predominantly elimination;⁴ since secondary RX-R₃N reaction is unlikely under these conditions, the E2 path (2a) must be the source.

We have now established conditions (180°; 10⁻³ Torr) under which the tetra-n-pentylammonium halides decompose entirely via equation (1), allowing determination of the relative rates of displacement by competition experiments. The results in the Table yield the relative rates: Cl-: Br-: I-= 620:7.7:1, in accord with the theory of medium effects on X⁻ nucleophilicity which identifies the inversion of the nucleophilicity order $I^- > Br^- > Cl^-$, observed in hydroxylic solvents, to $\rm Cl^- > Br^- > I^-$ in dipolar aprotic solvents with the structural change: $X - \cdots H - O - R \longrightarrow$ $X^{-,1,5,6}$ The poorly solvated X^- in dipolar aprotic solvents are more reactive than their X⁻···H-O-R counterparts by factors ranging from 10^4 for I⁻ to 10^7 for the more strongly solvated Cl-. The observed order of secondorder rate constants for the $S_N 2$ reaction of unassociated Xwith primary alkyl toluene-p-sulphonates is $Cl^-: Br^-: I^- =$ 8:3:1 (Me₂SO; 25°),⁶ 9:3:1 (HCONMe₂; 0°),⁷ 18:4:1 (Me₂CO; 25°).⁵ The much greater ratios observed in the molten $R_4N^+X^-$ show that this medium represents a further increase in dispersion of X- nucleophilicity, presumably both because there is some residual anion solvation (and deactivation) in dipolar aprotic solvents,⁸ and because

Pyrolysis of $(n-C_{5}H_{11})_{4}N/X^{1},X^{2}$ mixtures at 180 \pm 10°										
		Reactants (mmol)		Products (mmol) ^a			Products (%)			Relative rateb
X1	\mathbf{X}^2	$n^{\circ}(R_4NX^1)$	$n^{\circ}(\mathrm{R_4NX^2})$	$n(RX^2)$	$n(RX^2)$	$n(R_3N)$	RX1	RX^2	R ₃ N	$k(\mathrm{X}^2)/k(\mathrm{X}^1)$
I-		0.101		0.096	_	0.100	95c		100°	
Cl-		0.110		0.111		0.119	101d	_	108ª	
I-	Br-	0.105	0.102	0.0034	0.022		3.3	22		7.3 $7.7 + 0.4$
I-	Br-	1.005	0.101	0.068	0.044		6.8	44		$8.1 \int f^{1.7} \pm 0.4$
Br-	Cl-	1.27	0.141	0.0243	0.109	—	1.9	77		$\frac{76}{5}$ } 81 ± 4
Br-	Cl-	1.03	0.110	0.0027	0.025		0.26	23		$85 \int ^{01 \pm 4}$

TABLE

^a Trapped at -196° and determined by gas chromatography: all analyses in duplicate, precision $\pm 2\%$. ^b Calculated from the expression $k(X^2)/k(X^1) = \log\{n^{\circ}(R_4NX^2)/[n^{\circ}(R_4NX^2) - n(RX^2)]\}/\log\{n^{\circ}(R_4NX^1)/[n^{\circ}(R_4NX^1) - n(RX^1)]\}$, which follows from the integrated first-order rate law. This assumes constant volume of the reacting melt; consequently we arranged the experiments to keep the decrease in volume during reaction {as judged from $[n^{\circ}(R_4NX^1) - n(RX^1) + n^{\circ}(R_4NX^2) - n(RX^2)]/[n^{\circ}(R_4NX^1) + n^{\circ}(R_4NX^2)]$ } less than *ca* 10%. ^c Trace of pent-1-ene detected. ^d No pent-1-ene detected.

the less reactive substrate, R_4N^+ , causes a lower decrease in selectivity. We suggest that the fused-salt results provide the best model for the intrinsic relative nucleophilicities of the X⁻ toward saturated carbon.

The ratios of substitution [equation (1)] to elimination [equation (2)][†] products observed in mass-spectrometrically monitored pyrolyses of alkaloid methohalides were interpreted in terms of diminishing $S_N 2$ and increasing E2reactivity in the order I-, Br-, Cl-, F,4,9 but the present results show that, instead, it is due to a greater increase in the E2 rate constants in the order $I^- < Br^- < Cl^- < F^$ than that for the $S_N 2$ rate constants. Comparison of the data for the strychnine methohalides at 330-360° with those in the Table indicates the following relative E2 rates (temperature difference being ignored): $Cl^-:Br^-:I^- =$ 2400:15:1. These ratios are again much greater than those typical (e.g. 6:2:1 for X- dehydrobromination in acetone at 69.9°)10 of dipolar aprotic solvents; they are perhaps more in line with the probably larger differences in basicity of X-.11

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

(Received, July 5th, 1971; Com. 1133.)

† Elimination competes with substitution in many of these alkaloid methohalide pyrolyses in contrast to our results; whether this is due to the structural difference in R₄N⁺, the temperature difference (350-400° vs. 180°), or both, is not known.

¹ J. F. Bunnett, Ann. Rev. Phys. Chem., 1963, 14, 271.

² J. E. Gordon, in 'Techniques and Methods of Organic and Organometallic Chemistry', ed. D. B. Denney, vol. 1, Dekker, New York, 1969, ch. 3.

³ J. E. Gordon, J. Org. Chem., 1965, 30, 2760.

⁴ M. Hesse, W. Vetter, and H. Schmid, Helv. Chim. Acta, 1965, 48, 674.
⁵ S. Winstein, L. G. Savedoff, S. Smith, I. D. R. Stevens, and J. S. Gall, Tetrahedron Letters, 1960, No. 9, 24.
⁶ R. Fuchs and K. Mahendran, J. Org. Chem., 1971, 36, 730.

⁷ W. M. Weaver and J. D. Hutchison, J. Amer. Chem. Soc., 1964, 86, 261. ⁸ A. J. Parker, Chem. Rev., 1969, 69, 1.

⁹ M. Hesse and H. Schmid, Annalen, 1966, 696, 85.

 ¹⁰ D. Eck and J. F. Bunnett, J. Amer. Chem. Soc., 1969, 91, 3099.
 ¹¹ J. O. Edwards, J. Amer. Chem. Soc., 1954, 76, 1540; A. Allerhand and P. v. R. Schleyer, *ibid.*, 1963, 85, 1233; I. M. Kolthoff, S. Bruckenstein, and M. K. Chantooni, jun., ibid., 1961, 83, 3927.