The Use of Cobalt(II) Ion and Hydrochloric Acid as Catalyst for the Liquid-phase Oxidation of Alkylbenzenes

By H D HOLTZ

(Phillips Petroleum Co, Research & Development Dept, Bartlesville, Oklahoma 74004)

Summary The combination of cobalt(II) ions and hydrochloric acid is shown to be an excellent catalyst system for the oxidation of alkylbenzenes provided a mixed solvent consisting of chlorobenzene-acetic acid is employed

THE oxidation of alkyl-aromatic compounds to aromatic carboxylic acids using cobalt salts and a source of bromide ion in acetic acid is the basis of at least one important industrial process and numerous publications It has been reported¹ that chloride ion in contrast to bromide does not promote such cobalt-catalysed oxidations More recently it was demonstrated² that LiCl increases the rate of reaction of alkyl-aromatics with cobalt(III) acetate in the absence of oxygen in acetic acid

We have found that cobalt(II) acetate-HCl is an excellent catalyst for the oxidation of p-xylene or p-toluic acid to terephthalic acid in chlorobenzene-acetic acid at 176° Results are shown in the Table

benzoic acid in >95% yield ³ The oxidation of p-t-butyltoluene (3.37 \times 10⁻² mol) at 182° in chlorobenzeneacetic acid with oxygen (0 22 mol) for 2 h using the bromide system (catalyst B) gave a 94% yield of p-tbutylbenzoic acid and <1% terephthalic acid Using the chloride system (catalyst A), the following products and yields were obtained p-toluic acid (6%), p-methylacetophenone (10%), p-t-butylbenzoic acid (30%), terephthalic acid (8%), and p-acetylbenzoic acid (17%)

t-Butylbenzene (5 69 $\times~10^{-2}$ mol) is inert to oxidation using the bromide system (catalyst B) in acetic acid (75 ml) and oxygen (0 22 mol) at 182° for at least 3 h,† however, using the chloride system (catalyst A) in the mixed solvent, only 52% of the t-butylbenzene is recovered after 3 h, and the major ovidation products are acetophenone and benzoic acid in 48 and 16% yields, respectively, based on converted t-butylbenzene

All oxidation products were identified by comparing glpc retention times of their methyl esters (in the case

Experiment	Starting materials	Catalyst ^b	Tıme (h)	Solvent, PhCl (ml)	HOAc, (ml)	terephthalic Acid,° (%)
1		Α	1	45	30	93
2	p-Xylene	Α	1		75	15
3	p-Toluic acid	Α	2	45	30	94
4	p Xylene	С	2	45	30	45
5	ϕ Xylene	В	1		75	94
6	p Xylene	В	1	45	30	92

TABLE Yield of terephthalic acid as function of catalyst and solvent at 176°a

^a Reactions carried out in a 500 ml Parr Titanium Rocking Autoclave using 0.36 mol O₂, 0.36 mol N₂ as oxidizing gas and 73.4 mmol starting materials

^bA 1 mmol Co(OAc)₂ 4H₂O, 2 mmol HCl, B 1 mmol Co(OAc)₂ 4H₂O 1 mmol NaBr, C 1 mmol Co(OAc), 4H₂O

c Yield is obtained by glpc analysis of an esterified portion of the dry reaction products, assuming complete conversion

Experiments 1 and 4 show the importance of HCl The mixed solvent is essential for the chloride catalyst (Expts 1 and 2), whereas in the bromide system (Expts 5 and 6) Chlorobenzene alone is unsatisfactory as a it is not solvent

The oxidation of p-t-butyltoluene using cobalt(II) acetate-NH₄Br at 90° has been shown to give p-t-butylof acids), mp, nmr, and ir spectra with authentio samples

Thanks are due to Mr D L Smith for technical assistance and the Phillips Petroleum Co for permission to publish this work

(Received, July 19th, 1971, Com 1243)

Vield

† The mixed solvent was not used to preclude the possibility of traces of chloride in the system from possible chlorobenzene decomposition

A S Hay and H S Blanchard Canad J Chem, 1965, 43, 1309
² Ł I Heiba R M Dessau and W J Koehl jun, J Amer Chem Soc, 1969, 91, 6830.
³ Y Matsumura and T Hara J Chem Soc Japan Ind Chem Sect, 1967, 70 2272