Solvolysis of Brominated Neopentyl Derivatives in Super Acid: the Formation of Fluorosulphates

By JURGEN H EXNER,* LARRY D KERSHNER, and ERIC R LARSEN

(Halogens Research Laboratory, The Dow Chemical Company, Midland, Michigan 48640)

Summary The solvolysis of brominated neopentyl derivatives in antimony pentafluoride-fluorosulphonic acidsulphur dioxide forms unrearranged fluorosulphate esters

THE extremely strong but weakly nucleophilic acid system, antimony pentafluoride-fluorosulphonic acid-sulphur dioxide[†] is commonly used to generate stable carbonium ions at low temperatures We now report that in this solvent system neopentyl derivatives (I), (IIa), (IIIa), and (IV)

$$\begin{array}{cccc} CH_2 X & O ---CH_2 \\ | & | & | \\ C(CH_2Br)_2 & CH_2 -C(CH_2Br)_2 \\ | \\ CH_2 Y & (IV) \end{array}$$

$$\begin{array}{cccc} (IIIa) & X = Y = Br \\ (IIa) & X = Br & Y = OH \\ (IIb) & X = Br, & Y = OSO_2F \\ (IIIa) & X = Y = OH \\ (IIIb) & X = Y = OH \\ (IIIb) & X = Y = OH \\ (IIIb) & X = Y = OH \\ (IIIc) & X = OH, & Y = OSO_2F \end{array}$$

form fluorosulphate esters without the rearrangement commonly observed in neopentyl compounds $^{1,2}\!$

The solvolyses were carried out by dissolving the compounds in the acid at -78° Temperatures at which reactions occurred were established by observing the temperature variation of the n m r spectra Quenching at -78° in methanol-potassium carbonate slurries allowed the isolation of products which were consistent with the n m r spectrum prior to quenching These products were identified by n m r, ir, mass spectrometry, and elemental analyses

Reaction conditions and products are summarized in the Table These brominated neopentyl derivatives, like the neopentyl glycol system,³ are more stable in this solvent than neopentyl alcohol which readily dehydrates to the t-pentyl cation at $-50^{\circ 2}$ Solvolysis occurs most readily with 2,2-bis(bromomethyl)-1,3-dibromopropane (I) with successive formation of 3-bromo-2,2 bis(bromomethyl)propanel fluorosulphate (IIIb), 2,2-bis(bromomethyl)propane-1,3-diol diffuorosulphate (IIIb), and 2-(bromomethyl)-2-(hydroxymethyl)propane-1,3-diol trifluorosulphate (V) Formation of trifluorosulphate is indicated in the n m r by

[†] This acid system is composed of 1 ml of equimolar SbF₅-FSO₃H and 3 ml of liquid sulphur dioxide

		Conditions				Composition of products					
Reactant			Time	Temp.	% Yield	(IIa)	(IIb) Î	(IIIa)	(IIIb)	(IIIc)	(V)
(BrCH ₂) ₄ C		••	$5 \min$	-10 to $-30^{\circ a}$	85		6		82		13
			5 h	-30°	71		3		41		56
$(BrCH_2)_3CCH_2OH$	••	••	20 h 45 min	at -30° , plus at -12°	70	24	5		8	56	6
(IV)			8 h	-12°	90				2	98	
$(BrCH_2)_2C(CH_2OH)_2$	••	••	22 h	-12°	77			39	1	60	

TABLE Solvolysis of neopentyl derivatives in SbF5-FSO3H-SO2

^a Temperature required to effect solution.

N.m.r. spectra of compound (IIa) in SbF₅-FSO₃H-SO₂: FIGURE. A. at -50° ; B. after 100 min. at -15° ; C. Detail of figure B at 100 Hz sweep width.

¹ I. Dostrovsky and E. D. Hughes, J. Chem. Soc., 1946, 157.

² G. A. Olah, J. Sommer, and E. Namanworth, J. Amer. Chem. Soc., 1967, 89, 3576.

- ³ G. A. Olah and J. Sommer, J. Amer. Chem. Soc., 1968, 90, 927.
 ⁴ D. B. Denney and H. N. Relles, Tetrahedron Letters, 1964, 573.
- ⁵ C. E. Reineke and J. R. McCarthy, jun., J. Amer. Chem. Soc., 1970, 92, 6376.

two singlets at δ 4.69 (CH₂OSO₂F) and 3.57 p.p.m. (CH₂Br). Compounds (IIa), (IIIa), and (IV), [3-bromo-2,2-bis(bromomethyl)propanol, 2,2-bis(bromomethyl)propane-1,3-diol, and 3,3-bis(bromomethyl)oxetan, respectively] exist in their protonated forms at low temperatures. Upon raising the temperature, the major isolable product from solvolysis of these three compounds is 2,2-bis(bromomethyl)propane-1,3diol fluorosulphate (IIIc). For example, the Figure shows the change in the n.m.r. spectrum from the protonated alcohol at -50° with absorptions at δ 3.56 (s, 6, CH₂Br), 4.91 (t, 2, J 3.9 Hz, CH₂O), and 10.48 p.p.m. (t, 2, J 3.9 Hz, OH_{2}^{+}) to the spectrum at -15° which is consistent with the appearance of the protonated form of compound (IIIc) with absorptions at δ 3.57 (s, CH₂Br), 4.72 (s, CH₂OSO₂F), 4.95 (t, J 3.9 Hz, $CH_2OH_2^+$), and 10.55 p.p.m. (t, J 3.9 Hz, $CH_{2}OH_{2}^{+}).$

Formation of these fluorosulphates via an $S_N 2$ displacement at these low temperatures seems unlikely in view of the slowness of these reactions in neopentyl systems.¹ Even neopentyl compounds with much better leaving groups⁴ than bromine or protonated hydroxy require much stronger nucleophiles than fluorosulphonic acid in super acid. The tetrabrominated neopentane (I) is stable at 100° in water. The relative ease of formation of (IIIc) from the oxetan allows the protonated oxetonium ion as the solvolvsis intermediate for both alcohols (IIa) and (IIIa). Similarly, we postulate a 1,3-bromonium ion intermediate, recently demonstrated in this system,⁵ in the formation of the unrearranged fluorosulphonates from (I).

(Received, July 6th, 1971; Com. 1150.)