⁹³Nb Nuclear Magnetic Resonance in Solutions of the Halides of Niobium(v)

By YU. A. BUSLAEV,* V. D. KOPANEV, and V. P. TARASOV

(Institute of General and Inorganic Chemistry, Academy of Sciences, Moscow, U.S.S.R.)

Summary The 93 Nb n.m.r. spectra of mixtures of NbCl₅ and NbBr₅ were examined, and all of the seven possible species of niobium(v) halides were found to be present in the concentrations expected for random halogen distribution.

It has been shown in studies of halogen derivatives of carbon,^{1,2} silicon,³ and tin⁴ that the chemical shift of the central atom in the tetrahedral molecule is a smooth function of composition in series of the type MCl_nBr_{4-n} (n = 0-4) M = ¹³C, ²⁹Si, or ¹¹⁹Sn.

The object of our study of ⁹³Nb n.m.r. spectra is to obtain similar data for niobium compounds. The niobium resonances were measured using a broad-line spectrometer (6 MHz) with audio-phase-sensitive detection. The resonances were accordingly recorded as the derivative of the dispersion or absorption mode. The areas of the n.m.r. peaks were obtained by planimetry of the recorded signals and are accurate to within $\pm 10\%$. Chemical shifts were measured from NbF₅ dissolved in 48% HF as an external reference.

Upon mixing two niobium pentahalides such as NbCl₅ and NbBr₅ dissolved in acetonitrile, and allowing them to stand for some time, a random redistribution of the halogen substituents takes place and results in the formation of expected quantities of mixed halides of the type NbCl_n-Br_{6-n} (n = 0—6). The ⁹³Nb resonance spectrum of a 1:1 molar mixture of these compounds shows an individual band for each mixed halide (Figure 1). By carrying out

FIGURE 1. ⁹⁸Nb spectrum of an equimolar mixture of NbCl₅ and NbBr₅ dissolved in acetonitrile.

intensity measurements of the roughly equally spaced bands, it is possible to estimate approximately the amount of species present. The observed intensities are in good agreement with those expected for a random redistribution of the halogen substituents.

Following the method of Calingaert,⁵ the intensity of each species was calculated by applying the laws of random distribution.

In the case where there is only one kind of central atom M, with co-ordination number 6, and two different kinds of ligand, the number of different species is equal to 7, and the concentration of each species is given by the corresponding term of the binomial expansion $(r_1 + r_2)$.⁶ The quantities r_1 and r_2 are the mole fractions of the chlorine and bromine atoms, respectively. Denoting r_1 by r_1 and r_2 by (1 - r),

we obtain corresponding values of the concentrations of each mixed niobium halide component. The *r*-values were determined and the expected concentration in the final mixture was calculated taking into account the composition of the original mixture. As an illustration, the calculated and observed concentrations of all seven species in the system NbCl_nBr_{6-n} are shown in Table 1.

TABLE 1

Calculated and observed concentrations of species in a 1:1 molar mixture of $NbCl_5$ and $NbBr_5$

		Concentration		
				y units)
Anior	ı	Calc. ^a	Obs.	
$NbCl_6$.	••		0.05	0.08
NbCl ₅ Br-	••	• •	0.3	0.58
$NbCl_4Br_2^-$	••	••	0.78	0.74
NbCl ₃ Br ₃	••	••	1.00	1.00
$NbCl_2Br_4$	••	••	0.78	0.73
NbClBr ₅	••		0.3	0.3
$NbBr_{6}$.	••	••	0.05	0.09
^a Normali	zed to	1.00.		

Thus, according to the model used for random distribution, we conclude that the maximum number of halide atoms in the first co-ordination sphere of the niobium is six in the solution in question.

FIGURE 2. Plot of the ¹³C,^{1,2} ¹¹⁹Sn,⁴ and ⁹³Nb chemical shifts against the number of chlorine atoms.

The 93 Nb chemical shifts of the mixed halides with the variable mole ratios NbCl₅:NbBr₅ are summarised in Table 2. The widths of 93 Nb resonances are slightly vari-

Т	ABLE	2
---	------	---

⁹³Nb chemical shifts of species present in mixtures of niobium(v) halides (p.p.m. from NbF₆; ±5 p.p.m.) Mole fraction Nb halide

NbCl_{5}	$NbBr_{5}$	NbCl ₆	NbCl ₅ Br-	$NbCl_4Br_2$	NbCl ₃ Br ₃	$NbCl_2Br_4^-$	NbClBr ₅	NbBr ₆
1	0	1490						
0	1							2220
0.8	0.2	1485	1617	1742	1869			
0.5	0.5	1492	1621	1744	1868	1989	2112	2225
0.2	0.8				1874	1998	2114	2235

able. The width of each individual line measured as peak to peak was in the range 30-100 Hz. The broadest resonances were observed for $NbCl_nBr_{6-n}$ (n = 1, 2, 4, 5) ions at the power levels normally used. (The widths are accurate to about $\pm 10\%$).

It is of interest to note the correlation of ⁹³Nb chemical shifts with the composition in the series of $NbCl_nBr_{6-n}$ and also with electronegativities of halogen attached to niobium atoms. As was found for ¹³C, ⁶⁹Ga (ref. 6), ²⁷Al (ref. 7), ²⁹Si, and ¹¹⁹Sn nuclei in tetrahalides, the shielding decreases as the electronegativity of the attached halogen increases.

- The effects of substitution on the shielding of ⁹³Nb
- ¹ P. S. Lauterbur, J. Chem. Phys., 1957, 26, 217.
- ² P. C. Lauterbur, Ann. New York Acad. Sci., 1958, 70, 841.
- G. R. Holzman, P. C. Lauterbur, J. H. Anderson, and W. Koth, J. Chem. Phys., 1956, 25, 172.
 J. Burke and P. C. Lauterbur, J. Amer. Chem. Soc., 1961, 83, 326.
- ⁵ G. Calingaert and H. A. Beaty, J. Amer. Chem. Soc., 1939, 61, 2748.
- ⁶ A. Fratiello, R. Lee, and R. Schuster, *Inorg. Chem.*, 1970, **9**, 82. ⁷ D. E. O'Reilly, *J. Chem. Phys.*, 1960, **32**, 1007.

nuclei are opposite in sign to the effects of substitution on the shielding of ¹³C and ¹¹⁹Sn nuclei in compounds with tetrahedral symmetry. Figure 2 illustrates these features of the chemical shifts in compounds of tetrahedral and octahedral symmetry around the central atom.

Such behaviour on the part of ⁹³Nb chemical shifts may be characteristic of systems with *d*-orbitals participating in chemical bonding.

We thank the S.K.B. A.P., Academy of Sciences of the U.S.S.R., for the use of their instrument in recording the 93Nb n.m.r. spectra.

(Received, June 14th, 1971; Com. 983.)