Reactions of Phosphinothioylidene $(R-\ddot{P}=S)$ as Intermediate

By SHIGENOBU NAKAYAMA, MASAAKI YOSHIFUJI, RENJI OKAZAKI, and NAOKI INAMOTO* (Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan)

Summary Dechlorination of phenylphosphonothioic dichloride with magnesium in the presence of 2,3-dimethylbutadiene, benzil, and diethyl disulphide gave 1,2-thiaphosphorin, 1,3,2-dioxaphospholene, and phosphonotrithioate derivatives, respectively, and the formation of these products was explained in terms of the intermediacy

of phenylphosphinothioylidene ($Ph\ddot{P}=S$).

WE report some reactions which suggest the intermediacy of phosphinothioylidene ($\dot{\rm RP}=S$). Phenylphosphonothioicdichloride (I) was dechlorinated with an equimolar amount of magnesium in the presence of benzil in tetrahydrofuran (THF) at room temperature to form 2,4,5-triphenyl-1,3,2dioxaphospholene 2-sulphide (II), m.p. 126-5—127°, almost quantitatively; the structure of (II) was established by the analytical and spectral data: ³¹P n.m.r. (CHCl₃, 85% H₃PO₄ as external standard) δ -104 (t, $J_{\rm PHo}$ 15.6 Hz), M^+ 350. In the mass spectrum, the peak 140, (PhPS)⁺ itself, was observed though not predominant.

The dichloride (I) was dechlorinated similarly in diethyl disulphide to give diethyl phenylphosphonotrithioate (III)

in a 41% yield (b.p. 109-117°/0.05 mmHg). ³¹P n.m.r. (neat) δ -80.5 (sp, $J_{PSCH} = J_{PHo}$ 15.8, $J_{PHm} = J_{PHp}$ 3.4 Hz), M^+ 262.

These results suggest that phenylphosphinothioylidene generated, like phosphinidene,1,2 was trapped by benzil and diethyl disulphide through a 1,4-cycloaddition to both oxygen atoms and an insertion to the S-S bond, respectively.

In an atmosphere of nitrogen (I) was added dropwise to a solution containing 2,3-dimethylbutadiene, THF, and suspended magnesium with stirring, and the mixture was stirred at 50° overnight to complete dechlorination. Products obtained were 4,5-dimethyl-2-phenyl-3H,6H-1,2thiaphosphorin 2-oxide (Va; m.p. 85.5-86°) and 2-sulphide (Vb; m.p. $61-62^{\circ}$) in 21 and 22% yields respectively. Their formation is most reasonably explained by the

Diels-Alder-type reaction product (IV) of phenylphosphinothioylidene with 1,3-diene as for the thionitroso-compound,³ followed by the oxidation during isolation and the sulphurisation with unchanged dichloride (I) during reaction. The spectral data of thiaphosphorins (Va) and (Vb) were as follows; (Va): i.r. (KBr) 1205 cm⁻¹ ($\nu_{P=0}$), ¹H n.m.r. (CCl₄) δ 1.77(s, 5-Me), 1.97(d, 4-Me, J_{PH} 5 Hz), 2.4-4.0(m, $2 \times CH_2$), and 7.4—8.0(m, Ph), M^+ 238. (Vb): ¹H n.m.r. (CCl₄) δ 1.68(s, 5-Me), 1.93(d, 4-Me, J_{PH} 5 Hz), 2.7-3.9(m, $2 \times CH_2$), and $7 \cdot 2 - 8 \cdot 0$ (m, Ph), M^+ 254. Very recently (Vb) has been synthesised by another route.⁴

These reactions did not occur in the absence of magnesium under the same conditions.

(Received, July 8th, 1971; Com. 1168.)

¹ U. Schmidt, I. Boie, Ch. Osterroht, R. Schröer, and H.-F. Grützmacher, Chem. Ber., 1968, 101, 1381.

⁴ A. Ecker, I. Boie, and U. Schmidt, Angew. Chem. Internat. Edn., 1971, 10, 191.

P. C. Crofts and I. S. Fox, J. Chem. Soc. (B), 1968, 1417.
P. Tavs, Angew. Chem., 1966, 78, 1057.