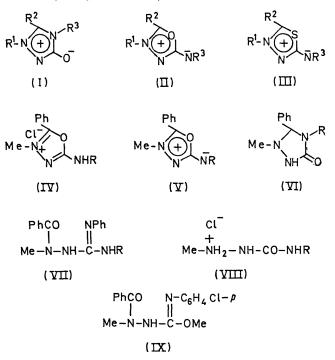
Synthesis of Meso-ionic Anhydro-2-arylamino-1,3,4-oxadiazolium Hydroxides

By W. D. Ollis* and C. A. RAMSDEN


(Department of Chemistry, The University, Sheffield S3 7HF)

Summary The synthesis and characterisation of anhydro-2-arylamino-1,3,4-oxadiazolium hydroxides (II), a new class of meso-ionic compounds, is described.

MESO-IONIC compounds (I) are well-known,¹ but the synthesis of their isomers (II) has not been previously described. The synthesis² of meso-ionic anhydro-2-arylamino-1,3,4-thiadiazolium hydroxides (III) encouraged the examination of the reaction between N-benzoyl-N-methylhydrazine (Ph-CO-NMe-NH₂) and arylisocyanide dichlorides (ArN=CCl₂). These reagents in boiling benzene yielded the 1,3,4-oxadiazolium chlorides (IVa, b, and c), but cation deprotonation by various bases was initially unsuccessful owing to the instability of the meso-ionic products. However, the 1,3,4-oxadiazolium chlorides (IVa, b, and c) in dichloromethane with ethereal diazomethane did yield the yellow meso-ionic 1,3,4-oxadiazoles [(Va) m.p. 123°, (Vb) m.p. 136°, and (Vc) m.p. 130°] which were stable in the crystalline state.

Anhydro-4-methyl-5-phenyl-2-phenylamino-1,3,4-oxadiazolium hydroxide (Va) had properties $[\lambda_{max}$ (CH₂Cl₂) 250 nm (ϵ 22,800) and 324 nm (ϵ 6300); ν_{max} (CH₂Cl₂) 1640 cm⁻¹; n.m.r. (CDCl₃) τ 6.06 (NMe); mass spectrum

 M^{\pm} 251; Ph-C=O m/e 105; and dipole moment $\mu(C_6H_6)$ 7.6 D] in accord with its meso-ionic formulation; its reaction in methylene chloride solution with hydrogen chloride regenerated the 1,3,4-oxadiazolium chloride (IVa).

In formulae (IV)—(VIII): (a) R=Ph; (b) $R=p\text{-MeC}_{6}H_{4};$ (c) $R=p\text{-ClC}_{6}H_{4}$

N-Benzoyl-N-methylhydrazine and phenyl isocyanate gave a semicarbazide (Ph-CO-NMe-NH-CO-NH-Ph) which, with sodium ethoxide in boiling ethanol, gave the stable meso-ionic compound (I; $R^1 = Me$; $R^2 = R^3 = Ph$) m.p. 242°. However, in spite of the stability of this compound, all attempts to achieve its formation from its isomer (Va) failed. Lithium aluminium hydride reduction of the compound (I; $R^1 = Me$; $R^2 = R^3 = Ph$) gave the 1,3,4triazolidin-2-one (VI), but similar reduction of the compounds (Va, b, and c) was unrewarding. The meso-ionic compound (Va) reacted with aniline in boiling dichloromethane giving the aminoguanidine (VII). The reaction of the 1,3,4-oxadiazolium chlorides (IV) in methanol solution at room temperature shows a remarkable difference: compounds (IVa) and (IVb) give the hydrochlorides (VIIIa) and (VIIIb) directly, whereas the compound (IVc) gives the product (IX). The isomeric meso-ionic systems (I) and (II) are easily distinguished by mass spectrometry $[(I) \rightarrow$ $P_{1}^{2} \subset P_{2}$

$$R^2-C \equiv N-R^3$$
, (II) $\rightarrow R^2-C \equiv O$].

(Received, June 28th, 1971; Com. 1086.)

¹ W. Baker and W. D. Ollis, *Quart. Rev.*, 1957, 11, 15; M. Ohta and H. Kato, in 'Nonbenzenoid Aromatics,' ed. J. P. Snyder, Academic Press, New York, 1969, pp. 117-248.

² W. D. Ollis and C. A. Ramsden, preceding communication.