The $+\frac{1}{3}$ Oxidation State of Mercury

By R. J. GILLESPIE* and P. K. UMMAT

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary The new compound $Hg_{6}^{2+}(AsF_{6}^{-})_{2}$ containing mercury in the previously unknown oxidation state of $+\frac{1}{3}$ has been obtained by the reaction of mercury with arsenic pentafluoride in liquid SO₂.

WHEN mercury in SO₂ is treated with AsF₅ in the mole ratio 2:1 for a period of about 1 h, a golden coloured crystalline solid (1) is obtained on removal of volatiles. Analytical data for the three elements were in excellent agreement with the composition Hg₃AsF₆. Further oxidation of (1) with AsF₅ gave Hg₃²⁺(AsF₆⁻)₂.¹ The reaction producing (1) can be represented:

$$6Hg + 3AsF_5 \rightarrow 2Hg_3AsF_6 + AsF_3$$

(1) can also be prepared by treating $Hg_2(AsF_6(_2 \text{ dissolved in } SO_2 \text{ with } Hg \text{ in the mole ratio } 1:4$

$$Hg_2(AsF_6)_2 + 4Hg \rightarrow 2Hg_3AsF_6$$

The gold compound reacts with 10^{-4} molar aqueous HNO₃ to give elemental mercury and Hg₂²⁺ in solution. The oxidation state of the golden coloured material is further confirmed by this disproportionation reaction which was found to occur according to the equation,

$$2 \text{Hg}_3(\text{AsF}_6) \rightarrow 4 \text{Hg} + \text{Hg}_2(\text{AsF}_6)_2$$

The room-temperature ¹⁹F n.m.r. spectrum of (1) in acetone, with which some reaction occurs, showed at ϕ + 63.5, the characteristic 1:1:1:1 quartet of the AsF₆⁻ anion (*J ca.* 930 Hz). The i.r. spectrum of (1) had a strong band at 699 cm⁻¹ which can be assigned as the v_3 vibration of AsF₆⁻. We conclude that (1) should be formulated as the ionic compound Hg₃^{*} (AsF₆⁻)_n. As it was found to be diamagnetic, odd values of *n* can be eliminated and the smallest possible value is n = 2, *i.e.*, Hg₆²⁺(AsF₆⁻)₂. It is insoluble in SO₂ and reacts with HSO₃F to give a pale yellow solution which has been shown to contain Hg₃²⁺. The reflectance spectrum of (1) showed a broad band at approximately 360 nm.

 ${\rm Hg}(+\frac{1}{3})$ can also be produced by oxidising mercury in ${\rm SO}_2$ with the stoicheiometric amount of ${\rm SbF}_5$ according to the equation

$$\begin{array}{c} 6\mathrm{Hg}\,+\,5\mathrm{SbF_5}\,{\rightarrow}\,\mathrm{Hg_6(Sb_2F_{11})_2}\,+\,\mathrm{SbF_3}\\ (\mathrm{II}) \end{array}$$

The reflectance spectrum of (II) was identical with that of $Hg_{6}(AsF_{6})_{2}$ both solids having an absorption at approximately 360 nm. However (II) could not be obtained pure as it is insoluble in SO₂ and could not therefore be separated from the SbF₃.

(Received, June 16th, 1971; Com. 987.)

¹C. G. Davies, P. A. W. Dean, R. J. Gillespie, and P. K. Ummat, Chem. Comm., 1971, 782.