By P. W. FRAIS and C. J. L. LOCK*

(Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada)

and A. GUEST

(Department of Chemistry, University of the West Indies, Mona, Jamaica)

Summary The preparation of ReOCl₂, by photodecomposition of ReOCl₄ and other methods, is described.

FOLLOWING the preparation of the first complexes of ReOCl₃,¹ many reports of further complexes appeared,² but so far there has been no report of the successful preparation of ReOCl₃. Edwards et al.³ recently reported a number of methods which were used in attempts to prepare ReOCl₃, but which were unsuccessful. We have independently used these same methods, also with no success, but we have found three methods for the successful preparation of ReOCl₃. We have also shown that ReOCl₃ exists in at least two different solid forms.

The first two methods of preparation involve the reaction of ReCl₅ with ReO₃ or ReCl₅ with ReO₂ at 300° in sealed tubes. These reactions are not clean; depending on the ratio of the reactants varying amounts of ReO₃Cl, ReOCl₄, Re₃Cl₉, and even rhenium metal are produced, and ReOCl. is rarely the major product. However, it is possible to separate ReOCl_a from the other products by careful trap to trap distillation in vacuo, and most of our work has been done on ReOCl₃ produced by these methods.

More recently we have discovered a third, and far more satisfactory way of producing ReOCl₃ by the photodecomposition of ReOCl₄ using 3500 Å light. Yields of greater than 50% can be obtained by irradiating 1 g of ReOCl, for

X-Ray powa	er data fo	r a- and	β -ReOCl ₃
------------	------------	----------	-----------------------------

α-ReOCl₃		β-ReOCl _a	
d (Å)	Ι	d (Å)	Ι
5.90	65	5.95	66
5.60	94	4.81	23
5.22	55	4.42	47
4.52	100	4.28	71
4.34	44	4.11	<4
4.21	8	4.01	13
3.89	<6	3 ∙88	39
3.69	<6	3.80	12
3.59	52	3.68	6
3.51	70	3.60	<5
3.36	10	3.50	<5
3.21	10	3.36	<5
3.13	58	3.17	33
2.97	13 (broad)	3.09	100
2.87	10	3.03	<5
2.77	13	2.98	<5
2.68	42	2.82	<5
2.61	72	2.75	39
2.55	<6	2.69	17
2.51	14	2.60	9
2.48	37	2.56	ca. 14 (broad)
21 others		2.53 ∫	, ,
		18 others	

 $Cu-K_{\alpha}$ radiation. Microdensitometer intensities.

12 h in a Rayonet Photochemical Reactor with 16 RPR 3500 Å lamps.

ReOCl_a was usually obtained at room temperatures as purple frost-like plates and we designate this form α -ReOCl₃. It was difficult to obtain a good i.r. spectrum of this material as it decomposed very rapidly to other oxochlorides during the preparation of the i.r. sample. However, a peak was always observed in the i.r. spectrum at 1018 cm⁻¹ and in some samples this was the only peak in the $850-1050 \text{ cm}^{-1}$ region; we assign this to a terminal Re=O stretch of α -ReOCl_a. Analyses for Re and Cl and determination of the oxidation state of Re by neutron activation⁴ were consistent with the ReOCl₃ formulation. The powder pattern of a sample of α -ReOCl₃ (Table) showed a superficial resemblance to that of monoclinic MoOCl₃,⁵ but a detailed examination suggests that the two compounds are not isomorphous.

On standing in vacuo, the purple "frost" forms thin dichroic purple grey, plate-like crystals by vapour-phase transport. This second form of ReOCl₃ (designated β -ReOCl_a) has a powder diffraction pattern quite different from that of α -ReOCl₃ (see Table). A single-crystal X-ray study shows that the compound is triclinic with a = 6.10b = 12.98, c = 6.05 Å, $\alpha = 88.4^{\circ}$, $\beta = 95.4^{\circ}$, $\gamma = 105.6^{\circ}$ and Z = 4. The volume of the unit cell is $459 \cdot 1$ Å³, which is very close to that of MoOCl₃.⁵ The unit-cell parameters appear to be related to those of monoclinic MoOCl₃. However, a comparison of the intensities of the individual reflections as well as a comparison of the powder diffraction patterns show clearly that the structures must be quite different.

The i.r. spectrum shows a peak at 1018 cm⁻¹, which we assign to a terminal Re=0 stretch.

 β -ReOCl₃ appears to be more stable than α -ReOCl₃, and melts at 78° with only minor decomposition. At higher temperatures, in vacuo, and on dissolution in CCl₄ or TiCl₄ both forms of ReOCl₃ decompose readily to yield ReOCl₄, Re₃Cl₉, and ReO₃Cl in a reaction such as

$5 \text{ReOCl}_3 \rightarrow \frac{2}{3} \text{Re}_3 \text{Cl}_9 + 2 \text{ReOCl}_4 + \text{ReO}_3 \text{Cl}_9$

However, at room temperature in vacuo, α -ReOCl₃ can be sublimed into a liquid-nitrogen-cooled trap, yielding a pale straw-yellow solid, which decomposes above -40° to give α -ReOCl₃. The yellow solid can be trap-to-trap distilled at temperatures below -40° . Analysis has shown that the Re: Cl atom ratio is 1:3 and in view of its ready re-conversion into α -ReOCl₃, the material may be the ReOCl₃ monomer. The instability and small quantities which we have obtained so far have precluded further physical examination.

(Received, November 16th, 1970; Com. 1978.)

¹C. J. L. Lock and G. Wilkinson, Chem. and Ind., 1962, 40. ²N. P. Johnson, C. J. L. Lock, and G. Wilkinson, J. Chem. Soc., 1964, 1054; J. Chatt and G. A. Rowe, *ibid.*, 1962, 4019; J. E. Fergusson, Coord. Chem. Rev., 1966, 1, 459, and references therein.
³ D. A. Edwards and R. T. Ward, J. Chem. Soc. (A), 1970, 1617.
⁴ W. D. Courrier, A. Guest, C. J. L. Lock, and R. H. Tomlinson, Canad. J. Chem., 1968, 46, 2965.

⁵ M. G. B. Drew and I. B. Tomkins, J. Chem. Soc. (A), 1970, 22.