The Crystal Structure of a Trigonal Planar Copper(i) Complex

By P. Gary Eller and P. W. R. Corfield*
(Department of Chemistry, The Ohio State University Columbus, Ohio 43210)

Summary Crystals of tris(trimethylphosphine sulphide)copper(I) perchlorate have been shown by X-ray diffraction to contain monomeric, trigonally co-ordinated cations, the free ligand being little changed in geometry upon co-ordination.

We report the crystal and molecular structure of tris(trimethylphosphine sulphide)copper(1) perchlorate, [Cu$\left.\left(\mathrm{SPMe}_{3}\right)_{3}\right]_{\mathrm{ClO}_{4}}$. This compound was first prepared by Meek and Nicpon in the course of their studies on the co-ordination
chemistry of trialkyl- and triaryl-phosphine sulphides. ${ }^{1,2}$ The reaction of these compounds with copper(ii) salts usually involves reduction to copper(I) and formation of complex cations of the type $\mathrm{CuL}_{4}{ }^{+}$. However, in the case of trimethylphosphine sulphide, a product was isolated and characterized as the novel salt, $\left[\mathrm{Cu}\left(\mathrm{SPMe}_{3}\right)_{3}\right] \mathrm{ClO}_{4}$, which would involve three-co-ordinate copper. It appeared that an X-ray diffraction study would be particularly useful, since structural studies on trigonal planar co-ordination compounds are still rare. ${ }^{3,4}$

Crystal data: $\mathrm{CuS}_{3} \mathrm{P}_{3} \mathrm{C}_{9} \mathrm{H}_{27} \mathrm{ClO}_{4}, M=511 \cdot 96$, colourless
platelets, from acetone; monoclinic, space group $P \mathbf{2}_{1} / c$; $a=6 \cdot 207(2), b=16 \cdot 465$ (5),$c=22 \cdot 144$ (7) $\AA, \beta=97 \cdot 63$ $(3)^{\circ} ; Z=4 ; D_{\mathrm{m}}=1 \cdot 44(\mathrm{l}), D_{\mathrm{c}}=1.448 \mathrm{~g} / \mathrm{cm}^{3} .2600$ nonzero reflections were obtained by the equi-inclination Weissenberg technique; least-squares refinement of a model with 150 variables reduced R to 0.11 ; refinement continues. The structure consists of discrete, well separated

Figure. View of $\left[\mathrm{Cu}\left(\mathrm{SPMe}_{3}\right)_{3}\right]$ down the pseudo-threefold axis. The plane of the sulphur atoms is inclined 23° to the be plane.
$\mathrm{Cu}\left(\mathrm{SPMe}_{3}\right)_{3}+$ cations and perchlorate counterions. Thus, the closest $\mathrm{Cu} \cdots \mathrm{Cl}$ contact is $6.9 \AA$, while the shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is $6.21 \AA$. The perchlorate ions are apparently disordered in a way not yet understood. The structure and dimensions of the cation are shown in the Figure. Co-ordination about copper is indeed close to
trigonal planar with the ligands bonded through sulphur. The copper atom is co-planar with the three sulphur atoms, while the phosphorus atoms $P(1), P(2)$, and $P(3)$ lie only $-0.46,+0.28$ and $+0.76 \AA$, respectively, from this plane. Bond angles about copper are close to the idealized value of 120°. The $\mathrm{Cu}-\mathrm{S}$ distances are similar to those found in copper(1) thiourea complexes. ${ }^{5,6}$ Although the $\mathrm{Cu}-\mathrm{S}$ distances are somewhat shorter than the sum of covalent tetrahedral radii for Cu and $\mathrm{S}(2 \cdot 39 \AA),{ }^{7}$ they are not sufficiently short to suggest appreciable metal-sulphur multiple bonding. ${ }^{8}$

Although there is some scatter among individual values, the average bond angle about sulphur (107.3°) is quite close to tetrahedral, suggesting formal $s p^{3}$ hybridization for sulphur.

We have also determined, by counter methods, the structure of free trimethylphosphine sulphide. Crystal data: $\mathrm{SPC}_{3} \mathrm{H}_{9}, M=108.08$, colourless plates, from methanol; monoclinic, space group $P 2_{1} / m ; Z=2 ; a=6.266(2)$, $b=7.588(5), \quad c=6.642(4) \AA, \quad \beta=90.36(5)^{\circ} ; \quad D_{\mathrm{m}}=1 \cdot 14$, $D_{\mathrm{c}}=1 \cdot 139 \mathrm{~g} / \mathrm{cm}^{3}$; least-squares refinement of a model with 28 variables has reduced R to 0.05 for 500 independent reflections. The molecules lie on a mirror plane. The geometry of trimethylphosphine sulphide changes little upon co-ordination. The P-S distance in the free ligand, [1.959 (2) \AA] is only slightly shorter than the average value found in the complex [1.994(17) \AA], suggesting little change in the $\mathrm{S}-\mathrm{P}$ bond order upon co-ordination. P-C distances are $1.798(2) \AA$ in the free ligand, and range from $1.756(10)$ to $1 \cdot 809(10) \AA$ in the complex [average $1.793(8) \AA$]. S-P-C angles range from 112.9° to 113.8° in the free ligand [average $113 \cdot 2(3)^{\circ}$] and from $108 \cdot 9^{\circ}$ to $114 \cdot 1^{\circ}$ in the complex [average $\left.111.6(6)^{\circ}\right]$.
The lack of change in the trimethylphosphine sulphide ligand upon co-ordination and the tetrahedral angles at sulphur in the complex suggest that sulphur is bonded to the metal by simple σ-donation of a filled $s p^{3}$ orbital. \dagger

The structures of other three-co-ordinate copper(1) complexes involving thiourea, ${ }^{5}$ phosphine, ${ }^{8}$ halide, ${ }^{8}$ cyanide, ${ }^{9}$ olefinic, ${ }^{10}$ and acetylenic ${ }^{11}$ ligands, have been reported. However, in each case the structure is polynuclear with bridging ligand groups. To our knowledge, the tris(trimethyl phosphine sulphide)copper(I) cation is the first structure reported of a trigonal monomeric copper complex.
(Received, November 19th, 1970; Com. 2007.)

[^0]
[^0]: \dagger However, we have just determined the crystal structure of the methyl iodide adduct of trimethylphosphine sulphide, [$\left.\mathrm{Me}_{3} \mathrm{PSMe}\right] \mathrm{I}$. This compound is ionic, with the fourth methyl group bonded to sulphur. The P-S distance, which should correspond to a single $P-S$ bond, has increased to $2.05(1) \AA$, while the $\mathrm{P}-\mathrm{S}-\mathrm{C}$ angle is 101°.
 ${ }^{1}$ P. Nicpon and Devon W. Meek, J. Amer. Chem. Soc., 1965, 87, 4951.
 ${ }^{2}$ P. Nicpon, Ph.D. Thesis, The Ohio State University, 1966.
 ${ }^{3}$ D. C. Bradley, M. B. Hursthouse, and O. F. Rodesiler, Chem. Comm., 1969, 14.
 ${ }^{4}$ V. Albano, P. L. Bellon, and V. Scatturin, Chem. Comm., 1966, 507.
 ${ }^{5}$ W. A. Spofford and E. L. Amma, Chem. Comm., 1968, 405.
 ${ }^{6}$ R. G. Vranka and E. L. Amma, J. Amer. Chem. Soc., 1966, 88, 4270.
 ${ }^{7}$ L. Pauling, "Nature of the Chemical Bond", 3rd edn., Cornell University Press, Ithaca, N. Y., 1967, pp. 246, 410.
 ${ }^{8}$ One would expect the covalent radius of three-co-ordinate copper to be less than that of four-co-ordinate copper. For example, see D. F. Lewis, S. J. Lippard, and P. S. Welcker, J. Amer. Chem. Soc., 1970, 92, 3805.
 ${ }^{9}$ D. T. Cromer, J. Phys. Chem., 1957, 61, 1388.
 ${ }^{10}$ N. C. Bzenziger, G. F. Richards, and J. R. Doyle, Inorg. Chem., 1964, 3, 1529, 1535.
 ${ }^{11}$ P. W. R. Corfield and H. M. M. Shearer, Acta Cryst., 1966, 21, 957; Abstracts of the Bozeman Meeting of the American Crystallographic Association, paper L-3, 1963.

