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Thermal and Catalysed Rearrangement of Olefinic Epoxides

By R. GrigG* and G. SHELTON
(Department of Chemistry, University of Nottingham, Nottingham NGT 2RD)

Summary. Some thermal, probably concerted, rearrange-
ments of norbornadiene and hexamethyl Dewar benzene
monoepoxides are described and the influence of rhodium-
(1) complexes on these rearrangements is reported and
discussed.

MEeTAL-10N catalysed rearrangements of alicyclic com-
pounds containing strained o bonds are of some current
interest.1~4  Evidence favouring stepwise processes?-%
rather than concerted rearrangements® has been reported,
and prompted us to extend these studies to strained
heterocycles.
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Three-membered heterocycles (1; X=0, NR, or S) under-
go ready cleavage of the 1,2-bond by nucleophiles whilst
cleavage of the 2,3-bond is comparatively rare. A two-step
oxidative-addition? (1 — 2— 3) of a metal ion M (oxidation
state n) would involve nucleophilic attack on the strained
ring. Both one- (1—3) and two-step oxidative-addition
processes should favour cleavage of the 1,2-bond whereas in
a concerted:catalysed process the preferred cleavage should

be more dependent on the structure of the molecule (prox-
imity of double bonds efc.) A further possibility is initial
co-ordination of the metal ion to the heteroatom which
could lead directly to (4).

Norbornadiene exo-epoxide (5)® has been shown to under-
go an acid-catalysed rearrangement to give an equilibrium
mixture (ratio 7:3) of aldehyde (6) and cyclic ether (7).
Orbital symmetry considerations suggest that a purely
thermal 2, + .25 + ,2a concerted pathway is also
feasible (8). When the thermal rearrangement (5— 6, 7)
was studied in base (KOH) washed apparatus at 100° it was
found to be complete after 1 h in quantitative yield. A
study of the rearrangement at five temperatures by n.m.r.
spectroscopy gave the following data: E, 24-2 kcal mol~! and
ASt —0-2 e.u. 'We consider this to be a concerted process
and draw attention to two related rearrangements (9 — 11;
R = PhSO,; or CN)® which can also be classified as
=23 + +2s + o2a processes.
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When the epoxide (5) was treated at room temperature
with a catalytic amount of tetracarbonyl-yu-dichloro-
dirhodium (12) an immediate and quantitative conversion
into (6 = 7) was observed and after heating (6, 7) with (12)
at 100° for 15 min the epimeric aldehyde (13; 669%,) could be
isolated. The same aldehyde was obtained by base-
catalysed epimerisation of (6, 7) and is sterically incapable
of equilibrating with (7) via a Cope rearrangement.

The monoepoxide of hexamethyl Dewar benzene (14) was
of interest since a .23 + ,2¢ + .25 process would lead to a
very strained system (15). However, when (14) was heated
at 155° for 15 h rearrangement occurred to give a mixture
of the cyclohexadienone (16)!! and the cyclopentadiene
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ketone (17),12 (total 629, ratio 2-7: 1) plus two other un-
identified components. The possibility of an allowed
o2a + o2s + o2a process for the generation of (16) must be
considered (14, arrows). In contrast, the rearrangement
(130°; 35 h) of (14) in the presence of (12) was more specific
and gave the cyclopentadiene ketone (17; 699%, isolated) as
the major product. The cyclopentadiene ketone (17) has
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Although the catalysed rearrangements are explainable
in terms of organo-rhodium intermediates [e.g. (3), (4)] we
have not detected any organo-rhodium compounds. These
studies are being extended to related heterocycles and other
metal catalysts and the possible involvement of the carbon
monoxide ligands in the rearrangement is being investi-
gated.

also been isolated as a by-product in the preparation of
(14).22 The cyclohexadienone (16) was unchanged on
heating at 130° in the presence of (12) indicating it was not
an intermediate in the formation of (17).
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