By J. C. BOUBEL, J. J. DELPUECH,* M. R. KHADDAR, and A. PEGUY

(Equipe de Recherche Associée au CNRS; Laboratoire de Chimie Physique Organique, 1, rue Grandville, 54-Nancy, France)

Summary Two ¹³C n.m.r. signals, one for the bulk and one for the bound solvent (1.94 p.p.m. upfield) are observed for aqueous dimethyl sulphoxide containing aluminium chloride.

It is well known that n.m.r. spectroscopy may be used to study solvation shells, since solvent molecules directly bound to a metal cation have different chemical shifts from those of the bulk solvent.¹ A great variety of nuclei have been used for this purpose: 1H, 17O, 31P, 27Al, 69Ga.1 At the present time, it seems that nobody has explored the possibility of using ¹³C n.m.r. ("C.m.r.") on non-enriched samples. We report here a preliminary experiment showing the potential of this ¹³C method.

Using a solution of aluminium chloride in a mixture of dimethyl sulphoxide and water, already studied by means of ¹H n.m.r. by Fratiello and Schuster² and Thomas and Reynolds³ in their pioneering work, we obtained two ¹³C signals (Figure) at 22.63 MHz with complete proton heteronuclear decoupling and Fourier transform accumulation (1000 scans). ¹H and ¹³C spectra are displayed side by side in the Figure to show the similarity of the Me₂SO solvation numbers obtained from the relative areas of the two signals: 1.08 (Figure a) and 0.24 (Figure b). Two different concentrations have been used so as to identify bulk and bound solvents unequivocally.

As for ³¹P, ¹C, ⁴ the bound ¹³C signal appears upfield, with a chemical shift far larger than for ${}^{1}\text{H}: -44$ Hz or -1.94p.p.m., against +13 Hz (at 60 MHz) or +0.21 p.p.m. The carbon atom of Me₂SO is indeed one link closer to the aluminium cation (presumably solvated to oxygen); moreover, ¹³C chemical shifts are intrinsically larger than those of protons. The experiments were performed at 30°: the rather broad bound signal encourages us to hope that it might give rise to separate components at low temperature for the various solvates $[Al(Me_2SO)_i(H_2O)_{6-i}]^{3+}$, where i = 1-6, as with ³¹P n.m.r. spectroscopy for analogous solutions of AlCl_a in aqueous hexamethylphosphorotriamide 4

These experiments may open a new route to solvation studies in organic solvents, especially with amides, nitriles, and ketones, for which the solvated carbon atom is very close to the cation.

¹³C spectra at 22.63 MHz were kindly supplied by Brüker Society, Karlsruhe (Germany), operating with a HX 90/2 apparatus, equipped with Fourier transform set and wide-band proton decoupling.

(Received, August 5th, 1971; Com. 1366.)

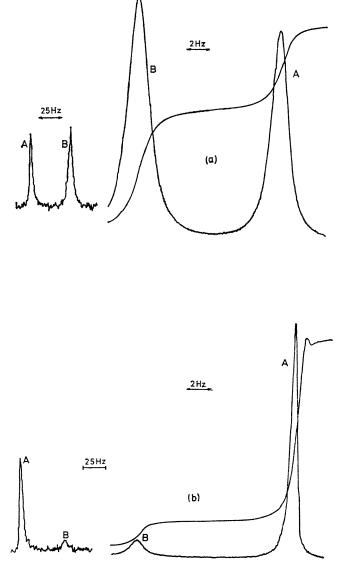


FIGURE. ¹H and ¹³C spectra (right and left, respectively) for D_2O solution of AlCl₃ in Me₂SO for a molar ratio [AlCl₃]/[Me₂SO] = 0.545 and Me₂SO solvation numbers: 1.08 (a) and 0.24 (by diluting the previous solution with D₂O; (b). Free solvent: A; bound solvent: B.

¹ For a review, see:

- (a) J. F. Hinton and E. S. Amis, Chem. Rev., 1967, 67, 367; (b) C. Deverell, Prog. N.M.R. Spectroscopy, 1968, 4, 235; (c) J. J. Delpuech, Peguy, and M. R. Khaddar, J. Electroanalyt. Chem., 1971, 29, 31, and refs. therein. ² A. Fratiello and R. Schuster, Tetrahedron Letters, 1967, 4641.

 - ³ S. Thomas and W. L. Reynolds, J. Chem. Phys., 1966, 44, 3148. ⁴ J. J. Delpuech, A. Peguy, and M. R. Khaddar, J. Magnetic Resonance, in the press.