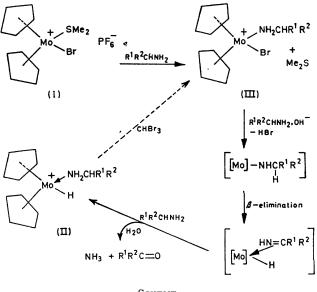
The Homogeneous Oxidation of Amines to Aldehydes or Ketones: Formation of Amine-Hydrides of Molybdenum

By F. W. S. BENFIELD and M. L. H. GREEN*

(Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)


Summary Treatment of the cation $[(\pi - C_5H_5)_2Mo(SMe_2)Br]^+$ with some amines R¹R²CHNH₂ in water gives the aminehydrides $[(\pi - C_5H_5)_2Mo(NH_2CHR^1R^2)H]^+$ together with aldehydes or ketones, R¹R²CHO, R² = H or alkyl.

TREATMENT of the compound $[(\pi-C_5H_5)_2Mo(SMe_2)Br]^+PF^-$ (I)¹ with an excess of some amines R¹R²CHNH₂ in water at 60° for several hours results in a smooth reaction and orange crystals are precipitated. Analysis, i.r. and ¹H n.m.r. data show the crystals to be the air-sensitive amine-hydride derivatives $[(\pi-C_5H_5)_2Mo(NH_2CHR^1R^2)H]^+PF_{\overline{6}}$ (II). The compounds (II) are isolated in high yields, *ca.* 80%.

The distillates obtained from the acidified reaction mixtures give copious precipitates with acidified solutions of 2,4-dinitrophenylhydrazine (dnph). The mass spectra of the recrystallised dnph adducts shows them to be the Schiffs base products $R^1R^2CH = N \cdot NH[C_6H_3(NO_2)_2]$ formed from the aldehydes or ketones $R^1R^2CHO, R^1 = H$ or alkyl: the reactions and products are shown in the Table.

We suggest that the amine-hydrides (II) and the aldehydes or ketones are formed by following reaction sequences shown in the Scheme.

Evidence for the above mechanism arises from the following observations: (i) that the amine-bromides (III) can be isolated, either by treatment of the corresponding aminehydride with bromoform (shown when $R^1R^2CH=Me,Et$, Bu^n,Pr^i), or, directly from the compound (I) and the anhydrous amine (shown when $R^1R^2CH = Me,Et$): (ii) that treatment of the amine-bromide (III; $R^1R^2CH = Et$) with aqueous sodium hydroxide gives the aldehyde MeCHO: (iii) that this mechanism is essentially similar to that suggested for the formation of transition-metal hydrides from alcohols in the presence of base.²

Scheme

Treatment of the compound (I) with aniline gives the amine-bromide (III; $R^1R^2CH = Ph$) from which the corresponding hydride may be prepared by reduction with sodium borohydride. Also, with benzylamine the compound (I) gives the di-cation $[(\pi-C_5H_5)_2MO(NH_2CH_2Ph)_2]^{2+}$ -

Products of the reaction between $[(\pi - C_5H_5)_2Mo(SMe_2)Br]^+$ and the amines $R^1R^2CHNH_2$

oducts $v_{M_0-H} cm^{-1}$	$ au_{ t Mo-H}$	R ¹ R ¹ CHO
tr)H]+ 1830 tr)H]+ 1830 suapH]+ 1830 -BupH]+ 1830 'b)Br]+	18·9 19·0 19·0 19·0 19·0 19·0	MeCHO Me ₂ CO Pr¤CHO MeEtCO —
	t)H]+ 1830 Pri)H]+ 1830 Bu ⁿ)H]+ 1830	$\begin{array}{ccccccc} fe (H) + & 1890 & 18\cdot 9 \\ t(H) + & 1830 & 19\cdot 0 \\ r^{i}(H) + & 1830 & 19\cdot 0 \\ su^{n}[H]^{+} & 1830 & 19\cdot 0 \\ 2 - Bu (H)^{+} & 1830 & 19\cdot 0 \\ r^{i}(H) + & 1830 & 19\cdot 0 \\ r^{i}(H) + & r^{i}(H) + r^{i}(H) + r^{i}(H) \\ r^{i}(H) + & r^{i}(H) + r^{i}(H) + r^{i}(H) \\ r^{i}(H) + & r^{i}(H) + r^{i}(H) + r^{i}(H) \\ r^{i}(H) + & r^{i}(H) \\ r^{i}(H) \\ r^{i}(H) + & r^{i}(H) \\ r^{i$

 $[\mathrm{PF}_{\,\!\!6}^-]_2$ in high yield. These latter reaction show that oxidation of amines does not occur with all amines.

 $W(NH_2Me)H]^+PF_6^-$ but the reaction is slow (100° for 3 days, $v_{W-H} = 1940 \text{ cm}^{-1}, \tau_{W-H} = 17.0$).

Treatment of the tungsten analogue of the complex (I) with methylamine also gives an amine-hydride, $[(\pi-C_5H_5)_2-$

(Received, August 10th, 1971; Com. 1400.)