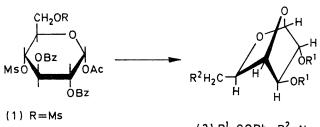
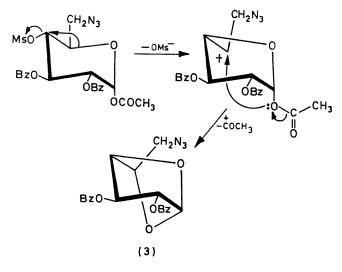
Rearrangement of α -D-Glucopyranose 4-Sulphonates to 1,4-Anhydro- β -D-Galactopyranoses

By C. BULLOCK, L. HOUGH, and A. C. RICHARDSON*

(Department of Chemistry, Queen Elizabeth College, London W8 7AH)


Summary α -D-Glucopyranose derivatives with a sulphonyl group at C-4 and an acetyl group at C-1 undergo rearrangement to 1,4-anhydro- β -D-galactopyranoses on treatment with sodium azide; the replacement of a terminal azide group by bromide on treatment with hydrogen bromide is reported.

4-SULPHONATES of methyl α -D-glucopyranoside readily undergo $S_{\rm N}2$ displacement of the sulphonyloxy-groups by nucleophiles such as azide, benzoate, thiocyanate, *etc.*¹ However, when the azide replacement was applied to the 1-O-acetyl analogue, namely 1-O-acetyl-2,3-di-O-benzoyl-4,6-di-O-mesyl- α -D-glucopyranose (1) the expected 4,6diazido-galactopyranose was not formed. Instead a monoazide was isolated in *ca.* 50% yield which had no acetyl or mesyl groups. The ¹H n.m.r. spectrum suggested that a profound conformational and/or configurational change had occurred because the largest splitting in the observed multiplets for 1-H, 2-H, 3-H, and 4-H was only 2.5 Hz (Table).


¹H N.m.r. parameters of 1,4-anhydro- β -D-galactopyranose

			derivatives ^a	-	
		(3)ъ	(4) °		(5) ^b
1-H		3.97d	3 ⋅86d		4.00d
2-H		4∙79qu	5∙07q		4.78qu
3-H		4 ∙72đ	$4.45s^{2}$		4.73đ
4-H		5·16d	5.00q		5.09d
5-H		5.90t	5.59sp	٦	
6a-H	}	6·77d	6·21t	}	5∙9 cm
6b-H			6∙43q	J	
$J_{1,2}$		2.5	3.7	-	$2 \cdot 5$
$J_{2,3}$		1.5	0		1.5
J 2,4		1.5	1.6		1.5
$J_{3,4}$		0	0		0
J 4,5		0	2.5		0
$J_{5.63}$		6·0	8.6		
J 5,6b		6·0	6.0		
$J_{63,6b}$			10.0		-

a s = singlet, d = doublet, t = triplet, q = quartet, qu = quintet, sp = septet, cm = complex multiplet; ^b in deuterio-pyridine; ^c in deuteriochloroform.

(3) $R^{1}=COPh$, $R^{2}=N_{3}$ (4) $R^{1}=COPh$, $R^{2}=Br$ (5) $R^{1}=COPh$, $R^{2}=OAc$ (6) $R^{1}=H$, $R^{2}=OH$

Scheme

The mono-azide reacted with hydrogen bromide in acetic acid with vigorous effervescence to give a brominecontaining product with no azide group. This reaction, we have found, is characteristic of a terminal azide group; full details will appear elsewhere. The mass spectrum of the bromide contained a peak at m/e 339 which corresponded to $C_{19}H_{15}O_6$, *i.e.* $[M - 94(CH_2Br)]$, showing that the bromide was a 6-bromo-anhydro-hexose dibenzoate. The ¹H n.m.r. spectrum suggested that it was a 1,4-anhydro-galactopyranose (4). The spectrum of the monoazide anhydride was largely first-order and decoupling experiments enabled each resonance to be assigned to a ring hydrogen (Table). By analogy with the ¹H n.m.r. parameters of known 1,4-anhydro-hexopyranose derivatives, borneol,3 and isoborneol4 derivatives it was deduced that 2-H must be equatorial because of the finite value of $J_{1,2}$ (2.5). Had the 2-hydrogen been axial the dihedral angle between 2- and 1-H would have been 90° giving rise to a zero coupling. Likewise the zero values for $J_{3,4}$ and $J_{4,5}$ suggest that 3-H and 4-H must be axial. These data are in complete accord with the suggested structure (3). The spectra of the 6-bromide (4) and the 6-O-acetate (5) (see later) were similar except that the value for $J_{4,5}$ in (4) was 2.5 rather than zero.

A possible mechanism for the rearrangement is by a ring contraction involving cleavage of the C-5-5-O bond and elimination of the sulphonyloxy-group by the negatively charged 5-O, followed by attack of the C-5 carbonium ion by the 1-O and then loss of the 1-acetyl group as shown in the Scheme. This type of ring contraction has already been observed in displacement reactions of pyranoside 4-sulphonates in which direct displacement is inhibited by the presence of an axial substituent at C-2.1,5,6 Furthermore, the migration of a 1-O on to C-5 of a hexofuranoside has also been observed.^{1,5} Consequently the steps in the rearrangement are analogous to other rearrangements in carbohydrates, but it is difficult to explain the difference between the glycoside and the corresponding 1-O-acetyl derivative (1).

(Received, July 28th, 1971; Com. 1312.)

¹ D. H. Ball and F. W. Parrish, Adv. Carbohydrate Chem., 1969, 24, 139. ² J. S. Brimacombe and L. C. N. Tucker, J. Chem. Soc. (C), 1968, 562; Carbohydrate Res., 1967, 5, 36.

³ J. I. Musher, Mol. Phys., 1963, 6, 93.

⁴ P. Laszlo and P. von R. Schleyer, J. Amer. Chem. Soc., 1964, 86, 1171; H. Z. Sable and H. Katchian, Carbohydrate Res., 1967, 5, 109.

 ⁵ C. L. Stevens, R. P. Glinski, K. G. Taylor, P. Blumbergs, and F. Sirokman, J. Amer. Chem. Soc., 1966, 88, 2073.
⁶ C. L. Stevens, R. P. Glinski, G. E. Gutowski, and J. P. Dickerson, Tetrahedron Letters, 1967, 649; S. Hanessian, Chem. Comm., 1966, 796.