Single-crystal Structure of cis,cis-1,3,5-Tris(pyridine-2-aldimino)cyclohexanenickel(11) Perchlorate

By E. B. FLEISCHER,* A. E. GEBALA, and D. R. SWIFT

(Department of Chemistry, University of California, Irvine, California 92664)

Ni^{II} complex.

Summary A single-crystal X-ray study has shown the Ni^{II} complex of *cis,cis-*1,3,5-tris(pyridine-2-aldimino)-cyclohexane to have a geometry intermediate between trigonal prismatic and octahedral, with an average angle of twist from trigonal prismatic of approximately 32° .

The geometry of the Zn^{II} complex of *cis,cis-*1,3,5-tris-(pyridine-2-aldimino)cyclohexane was previously determined to be trigonal prismatic, and it was also reported that the Ni^{II} complex was not isomorphous with the Zn^{II} complex.¹ Because of the recent interest in trigonal

mated Picker diffractometer with Zr-filtered Mo- K_{α} radiation. A total of 2796 reflections were collected using the θ - 2θ scan method and a scan rate of 1°/min, of which

prismatic co-ordination of α -di-imines²⁻⁵ and the difficulty

in distinguishing spectroscopically between the two geo-

metries,² we undertook a single-crystal X-ray study of the

The Ni^{II} perchlorate was prepared as previously reported,²

and crystallizes from water in the monoclinic system: a = 15.470 (7), b = 9.971 (5), c = 20.503 (10) Å, $\beta = 120.88$ (2)°, Z = 4, $D_{\rm c} = 1.60$ g cm⁻³, and $D_{\rm m} = 1.62$ g cm⁻³.

Precession photographs indicated either of two space

groups: P2/c or Pc. Data were collected using an auto-

1800 that were employed in the analysis were greater than $3\sigma_{\rm I}$ (where $\sigma_{\rm I}$ is the standard error in $I_{\rm obs}$ based on counting statistics). An acentric distribution of *E*'s calculated using FAME indicated the space group of lower symmetry *Pc*, which has two molecules per asymmetric unit. Patterson and Fourier methods were used for solution of the structure and full-matrix isotropic least-squares refinement yielded the present *R* value of 8.7%.

Bond distances and angles for the NiII co-ordination spheres

	Nickel 1 bond length		Nickel 2 bond length	
	(Å)	σ^{a}	(Å)	σ^{a}
Ni–Nald Ni–Npy	$2 \cdot 00 - 2 \cdot 12$ $2 \cdot 08 - 2 \cdot 15$	0-03 0-03	$\frac{1 \cdot 96 - 2 \cdot 08}{2 \cdot 09 - 2 \cdot 16}$	0·03 0·03
	bond angle	σ^{b}	bond angle	σ^{b}
Nald–Ni–Nald Npy–Ni–Npy Nald–Ni–Npy	84—86° 92–93° 77—80°	1 1 1	82—87° 92—94° 77—80°	1 1 1

FIGURE 1. Structure of the cis,cis-1,3,5-tris(pyridine-2-aldimino)cyclohexanenickel(11) ion. The sizes of the circles indicate isotropic temperature factors as well as perspective. All atoms not labelled are carbon.

 N_{ald} = aldimino nitrogen, N_{py} = pyridine nitrogen.

Estimated standard deviation in individual bond lengths.
 Estimated standard deviation in individual bond

* Estimated standard deviation in mutvidual bond

FIGURE 2. Projection of the co-ordination sphere down the pseudo-three-fold axis showing the angles of twist from trigonal prismatic of about 32°. The aldimino-nitrogens are shaded.

One of the two equivalent molecules in the asymmetric unit is shown in Figure 1. In comparison with the Zn^{II} complex, the Ni^{II} cation has significant distortion from trigonal prismatic co-ordination. Ranges for nickelnitrogen bond distances and nitrogen-nickel-nitrogen angles are presented in the Table for both cations in the asymmetric unit.

The co-ordination sphere, as viewed down the 3-fold axis, is shown in Figure 2. The aldimino nitrogens form a triangular face of approximately 2.81 Å, while those of the pyridine moieties form a face of 3.02 Å and the "average angle of twist" between the two faces is 32° . This value compares quite closely with that for the Ni^{II} complex of 1,1,1-tris(pyridine-2-aldiminomethyl)ethane, which is isomorphous with the corresponding Zn^{II} complex that has been found to have an angle of 28°.5,6 Such similarity for the Ni^{II} complexes is especially intriguing in view of the dissimilarity of the Zn^{II} complexes, and additional work to resolve this point is in progress.

We gratefully acknowledge the support of the National Institutes of Health.

(Received, June 22nd, 1971; Com. 1033.)

¹ W. O. Gillum, J. C. Huffman, W. E. Streib, and R. A. D. Wentworth, Chem. Comm., 1969, 843.
² W. O. Gillum, R. A. D. Wentworth, and R. F. Childers, Inorg. Chem., 1970, 9, 1825.
³ D. R. Boston and N. J. Rose, J. Amer. Chem. Soc., 1968, 90, 6859.
⁴ J. E. Parks, B. E. Wagner, and R. H. Holm, J. Amer. Chem. Soc., 1970, 92, 3500.
⁵ A. E. Gebala, P. A. Tasker, and E. B. Fleischer, J. Amer. Chem. Soc., 1970, 92, 6365.
⁶ An average angle of twist of 43° has been found for the Fe^{II} complex of 1,1,1-tris(pyridine-2-aldiminomethyl)ethane. A. E. Belainder upprovide Gebala and E. B. Fleischer, unpublished results.