Anodic Oxidation Pathways of Arylacetate Ions; the Pseudo-Kolbe Reaction

By JAMES P. COLEMAN and LENNART EBERSON*

(Division of Organic Chemistry, University of Lund, Chemical Center, P.O.B. 740, S-220 07 Lund 7, Sweden)

Summary Anodic oxidation of the caesium salt of 9-methylanthracene-10-acetic acid (I), to give "Kolbe" products, proceeds via electron removal from the aromatic nucleus.

ARYLACETATE ions can, in theory, be oxidised according to two formally distinct pathways,¹ namely by electron removal from the carboxylate group [(A), the normal Kolbe reaction mechanism] or the aryl group [(B), denoted the *pseudo*-Kolbe reaction]:

course of the Kolbe reaction (stereochemistry,28 radical

versus cation pathway^{2b}), it should be possible to design

arylacetate ions where the site of oxidation is the aryl group instead of the carboxylate ion, thereby obtaining a new tool

Since the CO_2 molecule lost in the decarboxylation step is thought to play an important role in determining the

for the understanding of this complex reaction.^{2C} We report one case of such an oxidation mechanism which we denote the *pseudo*-Kolbe reaction.

Voltammetric peak potentials, E _p , (v) versus SCE ^a			
R	RH	RCO_2H	RCO ₂ Cs+
9-Methyl-10-anthrylmethyl 1-Naphthylmethyl 4-Methoxybenzyl 2,4,6-Trimethylbenzyl	1.02 1.51 1.49 1.68	1·19 1·66 1·62 1·73	0·46 1·05 ^b 1·04 ^b 1·24 ^b

TABLE 1

^a Measured in acetonitrile containing tetra-n-butylammonium perchlorate (0.1 M), substrate (10-3 M). Stationary Pt disc anode, voltage sweep rate 4 v/min.

^b Onset of oxidation ca. 0.5 v.

A series of anylacetates has been studied voltammetrically and the results are shown in Table 1. These carboxylates all gave very broad oxidation peaks, except the caesium salt of 9-methylanthracene-10-acetic acid (I), the voltammogram of which is shown in the Figure. The semi-reversible couple

FIGURE. Voltammograms in acetonitrile (as Table 1).

 O_2-R_2 appears to be due to the acid, formed from protons liberated at the first peak, O_1 . That this acid is not formed

¹ J. P. Coleman, J. H. P. Utley, and B. C. L. Weedon, Chem. Comm., 1971, 438.

² (a) L. Eberson, Electrochim. Acta, 1967, 12, 1473; (b) D. L. Muck and E. R. Wilson, J. Electrochem. Soc., 1970, 117, 1358; (c) A. K Vijh and B. E. Conway, Chem. Rev. 1967, 67, 623.

³ L. Eberson and K. Nyberg, Acta Chem., Scand., 1964, 18, 1567. ⁴ P. H. Reichenbacher, M. Yen-Chien Liu, and P. S. Skell, J. Amer. Chem. Soc., 1968, 90, 1816. Cf. also L. Eberson, *ibid.*, 1969, 91, 2402.

in the solution prior to electrolysis can be shown by experiments with added pyridine. The possibility that O_2-R_2 is due to the α -nitrilium salt,³ (IIIb), cannot be ruled out since the corresponding pyridinium derivative (IIIc) shows a completely reversible oxidation peak at 1.34 v, moving to less anodic values in the presence of nucleophiles. Preparative-scale oxidation of (I) [tetrahydrofuran/5m-methanol, +0.7 v versus SCE] gave a mixture of the dimer (II) [30%, based on (I) consumed] and the methyl ether (IIIa) [40%], based on (I) consumed].

It is probable that, of the carboxylates studied, only (I) gives the pseudo-Kolbe reaction. If (I) were oxidised via the carboxylate group, with concerted loss of CO_2 , it would be expected that triphenylacetate ion, leading to a more stable benzylic radical and cation, would be oxidised even more easily. This is not the case, caesium triphenylacetate being oxidised at +1.00 v. Triphenylmethane is relatively difficult to oxidise $(E_p = 1.96 \text{ v})$ so that triphenylacetate ion is unlikely to undergo the pseudo-Kolbe reaction. This indicates that electron transfer from the carboxylate, with assistance from the aryl group, possibly via a concerted reaction, is occurring with the carboxylates other than (I). This effect is demonstrated by successive phenyl substitution of acetic acid, as shown in Table 2.

TABLE 2

Voltammetry of phenyl-substituted acetate ions, RCO₂-Cs+

Ep (v versus SCE) ^{a,b}
1.54
1.43
1.27
1.02

a,b As Table 1.

Contrary to previous findings with aliphatic acids,⁴ the above results show that large differences can be observed in carboxylate oxidations on changing the substituents. These results are of relevance to the discussion of a concerted mechanism in the Kolbe reaction. However, under the voltammetric conditions employed, using a large excess of perchlorate, two-electron oxidation almost certainly occurs.¹

(Received, August 6th, 1971; Com. 1375.)