
Intramolecular Catalysis in the Mutarotation of Aldoses

By BRIAN CAPON* and ROBERT B. WALKER

(Chemistry Department, Glasgow University, Glasgow W.2)

Summary The mutarotations of the anions of 6-deoxy-D-glucohepturonic acid and 6-O-(o-hydroxyphenyl)-Dglucose are intramolecularly catalysed.

ALTHOUGH many examples of intermolecular general-acid and general-base catalysis of the mutarotation of aldoses have been reported there is only one known example of intramolecular catalysis, viz, that of D-glucose-6-phosphate.^{1,2} We now report that the mutarotations of 6-deoxy-a-D-glucohepturonic acid (I) and 6-O-(o-hydroxyphenyl)- β -D-glucose (II) are intramolecularly catalysed. The rate constants extrapolated to zero buffer concentration, k_0 , for the mutarotation of D-glucose and 6-O-phenyl-D-glucose are independent of pH between pH 2.0 and 6.89 (see Figure) but the pH-rate profile for the mutarotation of 6-deoxy-D-glucohepturonic acid is sigmoid with $k_0 =$ $(k_{\rm SH} \times 10^{-p_{\rm H}}/K_{\rm a} + k_{\rm s})/(1 + 10^{-p_{\rm H}}/K_{\rm a}); k_{\rm SH}$ and $k_{\rm s}$, the rate constants for the mutarotation of the un-ionised and ionised forms respectively, have values 2.48×10^{-4} and 4.49×10^{-3} s⁻¹ at 25° and $K_{\rm a}$, the apparent dissociation constant, is 5.08×10^{-5} mol l⁻¹. The value of k_8 is about

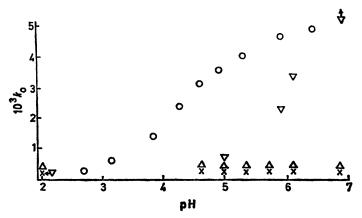


FIGURE. pH-rate profiles for the mutarotation of some aldoses: \triangle , D-glucose; ×, 6-O-phenyl-D-glucose; ○, 6-deoxy-D-gluco-hepturonic acid; \triangledown , 6-O-(o-hydroxyphenyl)-D-glucose. At pH 6.8 the value of k_0 for the mutarotation of 6-O-(0-hydroxyphenyl)-D-glucose is at least 1.1×10^{-2} s⁻¹. Under these conditions the apparent rate of change of rotation was limited by the time constant of the polarimeter and so the apparent rate constant is a lower limit for the rate constant for mutarotation. At pH 2 the value of k_0 for the mutarotation of 6-O-phenyl-D-glucose is $3\cdot11\times10^{-4}~{\rm s}^{-1}$ and that for the mutarotation of 6-O-(2-hydroxyphenyl)-D-glucose is $3.23 \times 10^{-4} \text{ s}^{-1}$.

11 times greater than the rate constant for the spontaneous mutarotation of D-glucose (σ_I for $CH_2 \cdot OH$ and $CH_2 \cdot CO_2^$ are respectively 0.05 and 0.01)³ and five times greater than that for the mutarotation of 6-deoxy-D-glucose (σ_I for CH₃ is -0.05).³ The plot of the logarithms of the rate constants for the spontaneous mutarotation of 6-substituted glucoses against $\sigma_{\rm I}$ is a fairly good straight line with $ho = -3\cdot 2$ and r = 0.943.4 The rate constant for the mutarotation of the anion of 6-deoxy-D-glucohepturonic acid estimated from this plot is 5.40 \times 10⁻⁴ s⁻¹, 8.3 times less than the experimentally determined value of k_8 . These results indicate that the mutarotation of the anion of 6-deoxy-D-glucohepturonic acid is faster than expected on the basis of the inductive effect of the CH2·CO2- group and hence the reaction is probably intramolecularly catalysed. The second-order constant for the mutarotation of D-glucose catalysed by a carboxylate ion of pK_a 4.3 was estimated from the results of Schmid and Bauer⁵ for the formateand acetate-catalysed reactions to be 1.2×10^{-3} l mol⁻¹ s^{-1} at 25° . The effective concentration⁶ of the internal carboxylate group in the mutarotation of the anion of 6-deoxy-D-glucohepturonic acid is therefore 3.5M. The analogous factor reported by Bailey, Fishman, and Pentchev for the mutarotation of D-glucose-6-phosphate is 2·2м.²

A more striking rate enhancement is found in the mutarotation of 6-O-(o-hydroxyphenyl)-D-glucose (II). In the pH range 2.0-6.89 the pH-rate profile is of the form: $k_0 =$ $k_{\rm spon} + k_{\rm OH} \times 10(^{\rm pH-p_{\it K}}_{\rm W})$ with $k_{\rm spon} = 3.23 \times 10^{-4} \, {\rm s}^{-1}$ and $k_{\rm OH} = 2.28 \times 10^5 \,\mathrm{l \, mol^{-1} \, s^{-1}}$ and at pH 6.89 k_0 is more than 40 times greater than k_0 for the mutarotation of 6-Ophenyl-D-glucose. k_{OH} is 2700 times greater than the rate constant for the hydroxide-ion-catalysed mutarotation of 6-O-phenyl-D-glucose. This rate enhancement presumably arises from the rapidity of the mutarotation of the ionised form of 6-O-(o-hydroxyphenyl)-D-glucose and the rate constant for this reaction is 14.0 s^{-1} (the pK_a is 9.78). The second-order constant for the mutarotation of 6-Ophenyl-D-glucose catalysed by phenolate ion $(pK_a = 9.98)$ is 1.24 l mol⁻¹ s⁻¹ and that for a base of pK_a 9.78 was estimated to be $1.01 \text{ mol}^{-1} \text{ s}^{-1}$. The effective concentration of the internal phenolate ion in the mutarotation of 6-O-(o-hydroxyphenyl)-D-glucose is therefore ca. 14M.

The intramolecular catalysis could be general-base catalysis (III) and (V)[†] or general-acid catalysis (IV) and (VI). Although there is no compelling evidence for either at present we favour intramolecular general-acid catalysis since this appears to be stereochemically more favourable. We thank the S.R.C. for a studentship.

(Received, September 1st, 1971; Com. 1533.)

[†] Analogous mechanisms which involve proton transfer through one or more water molecules and/or which involve water acting as a general-acid catalyst in concert with the intramolecular general-base catalysis are also possible.

- J. M. Bailey, P. H. Fishman, and P. G. Pentchev, J. Biol. Chem., 1968, 243, 4827.
- ² J. M. Bailey, P. H. Fishman, and P. G. Pentchev, *Biochemistry*, 1970, 9, 1189.
 ³ M. Charton, J. Org. Chem., 1964, 29, 1222.
 ⁴ B. Capon and R. B. Walker, unpublished work.

- ⁶ H. Schmid and G. Bauer, *Monatsh.*, 1965, 96, 1503. ⁶ Cf. W. P. Jencks, "Catalysis in Chemistry and Enzymology", McGraw-Hill, New York, 1969, p. 11; B. Capon, "Essays in Chemistry," in the press, submitted June 1970.